A new aspheric surface pre-collimation lenses system for the optical antenna of three-dimensional (3D) imaging of lidar has been optimally designed and simulated by optical design software CODE-V.Four kinds of asphe...A new aspheric surface pre-collimation lenses system for the optical antenna of three-dimensional (3D) imaging of lidar has been optimally designed and simulated by optical design software CODE-V.Four kinds of aspheric surfaces spherical lenses including the sections of spherical,elliptical,hyperbola,and parabola have been researched.The optical system,including the elliptical cylinder lenses collimation and the optical antenna,can be realized less than 5 rad collimation angle for dot source semiconductor laser beam.展开更多
Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field...Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field that project on the antennas can be confined to a spot with subwavelength width (-λ/11),and the light intensity can be enhanced to 91 times the incident light in the near-field with the bow-tie antenna. The enhancement also exists in the antenna arrays. The highest enhancement of the light intensity at the bow-tie antenna gap can reach about 28000 times,and the localized field can be coupled to a nano-particle near the antenna gap.展开更多
The ability to capture the chemical signatures of biomolecules(i.e.,electron-transfer dynamics)in living cells will provide an entirely new perspective on biology and medicine.This can be accomplished using nanoscale ...The ability to capture the chemical signatures of biomolecules(i.e.,electron-transfer dynamics)in living cells will provide an entirely new perspective on biology and medicine.This can be accomplished using nanoscale optical antennas that can collect,resonate and focus light from outside the cell and emit molecular spectra.Here,we describe biologically inspired nanoscale optical antennas that utilize the unique topologies of plant viruses(and thus,are called gold plant viruses)for molecular fingerprint detection.Our electromagnetic calculations for these gold viruses indicate that capsid morphologies permit high amplification of optical scattering energy compared to a smooth nanosphere.From experimental measurements of various gold viruses based on four different plant viruses,we observe highly enhanced optical cross-sections and the modulation of the resonance wavelength depending on the viral morphology.Additionally,in label-free molecular imaging,we successfully obtain higher sensitivity(by a factor of up to 10^(6))than can be achieved using similar-sized nanospheres.By virtue of the inherent functionalities of capsids and the plasmonic characteristics of the gold layer,a gold virus-based antenna will enable cellular targeting,imaging and drug delivery.展开更多
We present a narrow band forward scattering optical antenna which is based on the excitation of distinctive whispering gallery modes(WGMs). The antenna is composed of three coaxial cylinder layers: a dielectric lay...We present a narrow band forward scattering optical antenna which is based on the excitation of distinctive whispering gallery modes(WGMs). The antenna is composed of three coaxial cylinder layers: a dielectric layer is sandwiched between a metallic core and cladding. Owing to the destructive interference between the scattering of the outer metallic cladding and the WGM in the backward direction, the power flow in the forward direction is increased. Simulation and analysis show that in proper geometry conditions, the cavity can be tuned into a superscattering state. At this state, both the zeroth and the first order of WGM are excited and contribute to the total scattering. It is shown that the power ratio(power towards backward divided by power towards forward) can be enhanced to about 27 times larger than that for a non-resonant position by the superscattering. Owing to the confinement of the cladding to WGMs, the wavelength range of effective forward scattering is considerably narrow(about 15 nm).展开更多
Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared det...Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared detection.However,most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed,severely limiting other useful applications that broadband resonances make possible.In this study,we report a multiscale nanobridged rhombic antenna(NBRA)that supports two dominant reson-ances in the MIR,including a charge-transfer plasmon(CTP)band and a bridged dipolar plasmon(BDP)band which looks like a quadruple resonance.These assignments are evidenced by scattering-type scanning near-field optical micro-scopy(s-SNOM)imaging and electromagnetic simulations.The high-order mode only occurs with nanometer-sized bridge(nanobridge)linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis.Moreover,the main hotspots associated with the two resonant bands are spatially superimposed,en-abling boosting up the local field for both bands by multiscale coupling.With large field enhancements,multiband detec-tion with high sensitivity to a monolayer of molecules is achieved when using SEIRA.Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs,IR detectors,and beam-shaping of quantum cascade lasers in the future.展开更多
Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque m...Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque materials,such as metal strips,metallic tapes,or epoxy pastes;thus,prohibiting their use in flexible and wearable devices,and simultaneously limiting their integration into existing optoelectronic systems.Here,we demonstrate that mechanically flexible and optically transparent microwave antennas with high operational efficiencies can be readily fabricated using composite nanolayers deposited on common plastic substrates.The composite nanolayer structure consists of an ultra-thin copper-doped silver film sandwiched between two dielectric films of tantalum pentoxide and aluminum oxide.The material and thickness of each constituent layer are judiciously selected such that the whole structure exhibits an experimentally measured averaged visible transmittance as high as 98.94%compared to a bare plastic substrate,and simultaneously,a sheet resistance as low as 12.5Ω/sq.Four representative types of microwave antennas are implemented:an omnidirectional dipole antenna,unidirectional Yagi-Uda antenna,low-profile patch antenna,and Fabry-Pérot cavity antenna.These devices exhibit great mechanical flexibility with bending angle over 70°,high gain of up to 13.6 dBi,and large radiation efficiency of up to 84.5%.The proposed nano-engineered composites can be easily prepared over large areas on various types of substrates and simultaneously overcome the limitations of poor mechanical flexibility,low electrical conductivity,and reduced optical transparency usually faced by other constituent materials for flexible transparent microwave antennas.The demonstrated flexible microwave antennas have various applications ranging from fifth-generation and vehicular communication systems to bio-signal monitors and wearable electronics.展开更多
A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a ...A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.展开更多
We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs ...We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.展开更多
The effects of optical losses oil a directly-modulated radio-over-fiber (RoF) system used for distributed antenna networks are determined. The results show that with a properly designed bidirectional amplifier, the ...The effects of optical losses oil a directly-modulated radio-over-fiber (RoF) system used for distributed antenna networks are determined. The results show that with a properly designed bidirectional amplifier, the RoF link can tolerate over 20 and 16 dB of optical losses for down- and up-links, respectively. Simulation results are also consistent with the experimental data. These findings can contribute to tile design of RoF distributed antenna systems with different topologies.展开更多
Electron cyclotron emission imaging(ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in diff...Electron cyclotron emission imaging(ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in different toroidal ports with 67.5 degree separation have been implemented on J-TEXT to study the 3D structure of magnetohydrodynamic(MHD) instabilities. Each system consists of 12(vertical) × 16(horizontal) = 192 channels and the image of the 2nd harmonic X-mode electron cyclotron emission can be captured continuously in the core plasma region. The field curvature adjustment lens concept is developed to control the imaging plane for receiving optics of the ECEI systems. Field curvature of the image can be controlled to match the emission layer. Consequently, a quasi-3D image of the MHD instability in the core of the plasma has been achieved.展开更多
Resonators and the way they couple to external radiation rely on very different concepts if one considers devices belonging to the photonic and electronic worlds.The terahertz frequency range,however,provides intrigui...Resonators and the way they couple to external radiation rely on very different concepts if one considers devices belonging to the photonic and electronic worlds.The terahertz frequency range,however,provides intriguing possibilities for the development of hybrid technologies that merge ideas from both fields in novel functional designs.In this paper,we show that high-quality,subwavelength,whispering-gallery lasers can be combined to form a linear dipole antenna,which creates a very efficient,lowthreshold laser emission in a collimated beam pattern.For this purpose,we employ a terahertz quantum-cascade active region patterned into two 19-μm-radius microdisks coupled by a suspended metallic bridge,which simultaneously acts as an inductive antenna and produces the dipole symmetry of the lasing mode.Continuous-wave vertical emission is demonstrated at approximately 3.5 THz in a very regular,low-divergence(±10°)beam,with a high slope efficiency of at least 160 mWA^(−1) and a mere 6 mA of threshold current,which is ensured by the ultra-small resonator size(VRES/λ^(3)≈10^(−2)).The extremely low power consumption and the superior beam brightness make this concept very promising for the development of miniaturized and portable THz sources to be used in the field for imaging and sensing applications as well as for exploring novel optomechanical intracavity effects.展开更多
In satellite laser communication technology, which is built between planets and between a planet and the Earth, the optical antenna is the key point. Thus, research on optical system design is important. The off-axis ...In satellite laser communication technology, which is built between planets and between a planet and the Earth, the optical antenna is the key point. Thus, research on optical system design is important. The off-axis reflective system has no obscuration and hence possesses a high efficiency for energy transfer. This study proposes a novel method for designing a free-form off-axis reflective imaging system. This study also introduces differential equations that depend on Fermat's principle and sine condition. Finally, a free-form off-axis two-mirror optical system was designed by using the differential equation method. This system includes one intermediate image plane, in which the field of view (FOV) is -5° to -4° in the y-axis and -1° to 0° in the x-axis. The modulation transfer function was greater than 0.7 at 50 lp/mm, and the efficiency of energy transmission was high. The free-form off-axis two-mirror optical system involves a wide range of application prospects in the optical antenna used in the satellite laser communication systems. Moreover, the design method that used differ- ential equations was proven simple and effective.展开更多
Aluminum (Al) plasmonic nanoantennas pos- sess many tunabilities in the ultraviolet (UV) region and have a variety of new applications, such as in sensitive UV photodetection and UV photolithography. Using discret...Aluminum (Al) plasmonic nanoantennas pos- sess many tunabilities in the ultraviolet (UV) region and have a variety of new applications, such as in sensitive UV photodetection and UV photolithography. Using discrete dipole approximation (DDA), the resonant optical proper- ties and enhanced local field distribution of coupled Al nanorod antennas were investigated. The effects of gap distance on the extinction spectra were analyzed to obtain the surface plasmon modes of these nanostructures across the visible and in the UV spectral range, which can be attributed to the coupling of the surface plasmon modes from each Al nanorod. In addition, the enhanced local field factors plotted as a function of gap distance were simulated under transverse and longitudinal polarizations to achieve maximum near-field enhancement for the optical antennas. When the gap distance was decreased to 5 nm, the maximum value of the enhanced factor was 18.04 at the transverse mode peak of 424 nm. This could be explained by the combination of the interaction between the charges distributed at the opposite ends of two Al nanorods and the interaction between the charges distributed at the lateral sides of each Al nanorod. Results showed that the coupled Al nanorod antennas with enhanced local field show promise for UV plasmonics.展开更多
By enabling the probing of light-matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other metho...By enabling the probing of light-matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.展开更多
基金supported by Pre-research Foundation under Grant No. G020104PJ09DZ0246the National Natural Science Foundation of China under Grant No. 11004024
文摘A new aspheric surface pre-collimation lenses system for the optical antenna of three-dimensional (3D) imaging of lidar has been optimally designed and simulated by optical design software CODE-V.Four kinds of aspheric surfaces spherical lenses including the sections of spherical,elliptical,hyperbola,and parabola have been researched.The optical system,including the elliptical cylinder lenses collimation and the optical antenna,can be realized less than 5 rad collimation angle for dot source semiconductor laser beam.
文摘Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field that project on the antennas can be confined to a spot with subwavelength width (-λ/11),and the light intensity can be enhanced to 91 times the incident light in the near-field with the bow-tie antenna. The enhancement also exists in the antenna arrays. The highest enhancement of the light intensity at the bow-tie antenna gap can reach about 28000 times,and the localized field can be coupled to a nano-particle near the antenna gap.
基金This work was supported by the Air Force Office of Scientific Research Grants AFOSR FA2386-13-1-4120.
文摘The ability to capture the chemical signatures of biomolecules(i.e.,electron-transfer dynamics)in living cells will provide an entirely new perspective on biology and medicine.This can be accomplished using nanoscale optical antennas that can collect,resonate and focus light from outside the cell and emit molecular spectra.Here,we describe biologically inspired nanoscale optical antennas that utilize the unique topologies of plant viruses(and thus,are called gold plant viruses)for molecular fingerprint detection.Our electromagnetic calculations for these gold viruses indicate that capsid morphologies permit high amplification of optical scattering energy compared to a smooth nanosphere.From experimental measurements of various gold viruses based on four different plant viruses,we observe highly enhanced optical cross-sections and the modulation of the resonance wavelength depending on the viral morphology.Additionally,in label-free molecular imaging,we successfully obtain higher sensitivity(by a factor of up to 10^(6))than can be achieved using similar-sized nanospheres.By virtue of the inherent functionalities of capsids and the plasmonic characteristics of the gold layer,a gold virus-based antenna will enable cellular targeting,imaging and drug delivery.
基金Project supported by the National Natural Science Foundation of China(Grant No.61377054)the Collaborative Innovation Foundation of Sichuan University,China(Grant No.XTCX 2013002)the International Cooperation and Exchange of Science and Technology Project in Sichuan Province,China(Grant No.2013HH0010)
文摘We present a narrow band forward scattering optical antenna which is based on the excitation of distinctive whispering gallery modes(WGMs). The antenna is composed of three coaxial cylinder layers: a dielectric layer is sandwiched between a metallic core and cladding. Owing to the destructive interference between the scattering of the outer metallic cladding and the WGM in the backward direction, the power flow in the forward direction is increased. Simulation and analysis show that in proper geometry conditions, the cavity can be tuned into a superscattering state. At this state, both the zeroth and the first order of WGM are excited and contribute to the total scattering. It is shown that the power ratio(power towards backward divided by power towards forward) can be enhanced to about 27 times larger than that for a non-resonant position by the superscattering. Owing to the confinement of the cladding to WGMs, the wavelength range of effective forward scattering is considerably narrow(about 15 nm).
文摘Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared detection.However,most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed,severely limiting other useful applications that broadband resonances make possible.In this study,we report a multiscale nanobridged rhombic antenna(NBRA)that supports two dominant reson-ances in the MIR,including a charge-transfer plasmon(CTP)band and a bridged dipolar plasmon(BDP)band which looks like a quadruple resonance.These assignments are evidenced by scattering-type scanning near-field optical micro-scopy(s-SNOM)imaging and electromagnetic simulations.The high-order mode only occurs with nanometer-sized bridge(nanobridge)linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis.Moreover,the main hotspots associated with the two resonant bands are spatially superimposed,en-abling boosting up the local field for both bands by multiscale coupling.With large field enhancements,multiband detec-tion with high sensitivity to a monolayer of molecules is achieved when using SEIRA.Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs,IR detectors,and beam-shaping of quantum cascade lasers in the future.
文摘Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque materials,such as metal strips,metallic tapes,or epoxy pastes;thus,prohibiting their use in flexible and wearable devices,and simultaneously limiting their integration into existing optoelectronic systems.Here,we demonstrate that mechanically flexible and optically transparent microwave antennas with high operational efficiencies can be readily fabricated using composite nanolayers deposited on common plastic substrates.The composite nanolayer structure consists of an ultra-thin copper-doped silver film sandwiched between two dielectric films of tantalum pentoxide and aluminum oxide.The material and thickness of each constituent layer are judiciously selected such that the whole structure exhibits an experimentally measured averaged visible transmittance as high as 98.94%compared to a bare plastic substrate,and simultaneously,a sheet resistance as low as 12.5Ω/sq.Four representative types of microwave antennas are implemented:an omnidirectional dipole antenna,unidirectional Yagi-Uda antenna,low-profile patch antenna,and Fabry-Pérot cavity antenna.These devices exhibit great mechanical flexibility with bending angle over 70°,high gain of up to 13.6 dBi,and large radiation efficiency of up to 84.5%.The proposed nano-engineered composites can be easily prepared over large areas on various types of substrates and simultaneously overcome the limitations of poor mechanical flexibility,low electrical conductivity,and reduced optical transparency usually faced by other constituent materials for flexible transparent microwave antennas.The demonstrated flexible microwave antennas have various applications ranging from fifth-generation and vehicular communication systems to bio-signal monitors and wearable electronics.
基金supported by the National "973" Project of China(Nos.2010CB328202,2010CB328204,and 2012CB315604)the National Natural Science Foundation of China(Nos.61271191 and 61001124)+3 种基金the National "863" Project of China(No.2012AA011302)the Program for New Century Excellent Talents in University(No.NCET-12-0793)the Beijing Nova Program(No.2011065)the Fundamental Research Funds for the Central Universities
文摘A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.
文摘We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.
基金supported by the National "863" Program of China(No.2011AA010306)the National "973" Program of China(No.2012CB315705)+2 种基金the National Natural Science Foundation of China(Nos.61107058,61120106001,60932004,61001121,and 60837004)the Beijing Excellent Doctoral Thesis Project(No.YB20101001301)the Cooperation Project between Province and Ministries(No.2011A090200025)
文摘The effects of optical losses oil a directly-modulated radio-over-fiber (RoF) system used for distributed antenna networks are determined. The results show that with a properly designed bidirectional amplifier, the RoF link can tolerate over 20 and 16 dB of optical losses for down- and up-links, respectively. Simulation results are also consistent with the experimental data. These findings can contribute to tile design of RoF distributed antenna systems with different topologies.
基金supported by the National Magnetic Confinement Fusion Science Program of China under Grant Nos.2013GB106002 and 2014GB109002National Natural Science Foundation of China under Grant Nos.10990210 and 11275200
文摘Electron cyclotron emission imaging(ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in different toroidal ports with 67.5 degree separation have been implemented on J-TEXT to study the 3D structure of magnetohydrodynamic(MHD) instabilities. Each system consists of 12(vertical) × 16(horizontal) = 192 channels and the image of the 2nd harmonic X-mode electron cyclotron emission can be captured continuously in the core plasma region. The field curvature adjustment lens concept is developed to control the imaging plane for receiving optics of the ECEI systems. Field curvature of the image can be controlled to match the emission layer. Consequently, a quasi-3D image of the MHD instability in the core of the plasma has been achieved.
文摘Resonators and the way they couple to external radiation rely on very different concepts if one considers devices belonging to the photonic and electronic worlds.The terahertz frequency range,however,provides intriguing possibilities for the development of hybrid technologies that merge ideas from both fields in novel functional designs.In this paper,we show that high-quality,subwavelength,whispering-gallery lasers can be combined to form a linear dipole antenna,which creates a very efficient,lowthreshold laser emission in a collimated beam pattern.For this purpose,we employ a terahertz quantum-cascade active region patterned into two 19-μm-radius microdisks coupled by a suspended metallic bridge,which simultaneously acts as an inductive antenna and produces the dipole symmetry of the lasing mode.Continuous-wave vertical emission is demonstrated at approximately 3.5 THz in a very regular,low-divergence(±10°)beam,with a high slope efficiency of at least 160 mWA^(−1) and a mere 6 mA of threshold current,which is ensured by the ultra-small resonator size(VRES/λ^(3)≈10^(−2)).The extremely low power consumption and the superior beam brightness make this concept very promising for the development of miniaturized and portable THz sources to be used in the field for imaging and sensing applications as well as for exploring novel optomechanical intracavity effects.
基金This study was supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences and the National Science Foundation for Young Scholars of China (Grant No. 61505203).
文摘In satellite laser communication technology, which is built between planets and between a planet and the Earth, the optical antenna is the key point. Thus, research on optical system design is important. The off-axis reflective system has no obscuration and hence possesses a high efficiency for energy transfer. This study proposes a novel method for designing a free-form off-axis reflective imaging system. This study also introduces differential equations that depend on Fermat's principle and sine condition. Finally, a free-form off-axis two-mirror optical system was designed by using the differential equation method. This system includes one intermediate image plane, in which the field of view (FOV) is -5° to -4° in the y-axis and -1° to 0° in the x-axis. The modulation transfer function was greater than 0.7 at 50 lp/mm, and the efficiency of energy transmission was high. The free-form off-axis two-mirror optical system involves a wide range of application prospects in the optical antenna used in the satellite laser communication systems. Moreover, the design method that used differ- ential equations was proven simple and effective.
基金This work Research Program of China (No was supported by the National Basic 2013CBA01703), the National NaturalScience Foundation of China (Grant No. 21271007), the Foundation for Young Talents in College of Anhui Province (No. 2013SQRL044ZD), the Colleges and Universities Natural Science Foundation of Anhui Province (No. KJ2016JD18).
文摘Aluminum (Al) plasmonic nanoantennas pos- sess many tunabilities in the ultraviolet (UV) region and have a variety of new applications, such as in sensitive UV photodetection and UV photolithography. Using discrete dipole approximation (DDA), the resonant optical proper- ties and enhanced local field distribution of coupled Al nanorod antennas were investigated. The effects of gap distance on the extinction spectra were analyzed to obtain the surface plasmon modes of these nanostructures across the visible and in the UV spectral range, which can be attributed to the coupling of the surface plasmon modes from each Al nanorod. In addition, the enhanced local field factors plotted as a function of gap distance were simulated under transverse and longitudinal polarizations to achieve maximum near-field enhancement for the optical antennas. When the gap distance was decreased to 5 nm, the maximum value of the enhanced factor was 18.04 at the transverse mode peak of 424 nm. This could be explained by the combination of the interaction between the charges distributed at the opposite ends of two Al nanorods and the interaction between the charges distributed at the lateral sides of each Al nanorod. Results showed that the coupled Al nanorod antennas with enhanced local field show promise for UV plasmonics.
文摘By enabling the probing of light-matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.