Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to t...Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.展开更多
Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compa...Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.展开更多
A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track...A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.展开更多
The mechanical effect induced by the cavitati- on bubble collapse in the neighborhood of a solid boundary was investigated by focusing a Q-switched laser pulse on a metal target in water. By means of a fiber-coupling ...The mechanical effect induced by the cavitati- on bubble collapse in the neighborhood of a solid boundary was investigated by focusing a Q-switched laser pulse on a metal target in water. By means of a fiber-coupling optical beam deflection technique, the displacement generated by liquid jet impact at the final stage of the bubble collapse was detected at the epicenter of the rear metal surface. Furthermore, by combining a widely used laser ablation model with the detection principles of this detector, the transient impact force exerting on the target material could be easily estimated. Besides, according to experimental results and the modified Ray leigh theory, the maximum bubble radius and the liquid-jet pressure were also obtained, which are in good agreement with previous results,展开更多
基金supported by Science and Technology Innovation Seedling Project of Sichuan Province,China(Grant No.2018100)Major Project of CDNU(Grant No.CS18ZDZ0511).
文摘Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.
基金supported by the National Natural Science Foundation of China (Grant No 60578015)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institute of China (2003-2008)the National Key Opening Experiment Foundation of Laser Technology of China (Grant No 2005)
文摘Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.
基金supported by the National Natural Science Foundation of China(Grant Nos 60578015,60778007 and 60878037)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No 05KTB510028)the Scientific Research Starting Foundation for Returned Scholars,Nanjing University of Posts & Telecommunications,China(Grant Nos NY207030 and NY206076)
文摘A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.
文摘The mechanical effect induced by the cavitati- on bubble collapse in the neighborhood of a solid boundary was investigated by focusing a Q-switched laser pulse on a metal target in water. By means of a fiber-coupling optical beam deflection technique, the displacement generated by liquid jet impact at the final stage of the bubble collapse was detected at the epicenter of the rear metal surface. Furthermore, by combining a widely used laser ablation model with the detection principles of this detector, the transient impact force exerting on the target material could be easily estimated. Besides, according to experimental results and the modified Ray leigh theory, the maximum bubble radius and the liquid-jet pressure were also obtained, which are in good agreement with previous results,