A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into ...A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process展开更多
To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function's gradient ...To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function's gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit fimction. It has outstanding performance in multilayer optical coating design with a large layer number.展开更多
The influences of various laser modes on the splitting beam effect of Dammann grating are studied in theory and by numerical simulation. The results show that fundamental mode laser resembles plane wave while high ord...The influences of various laser modes on the splitting beam effect of Dammann grating are studied in theory and by numerical simulation. The results show that fundamental mode laser resembles plane wave while high order mode laser differs from plane wave in the splitting beam effect by Dammann grating. Therefore, the fundamental mode laser is more suitable to be the light source to improve the energy efficiency in far-distance image detecting systems, such as laser image ladar, which use Dammann grating in the ilhlmination svstem.展开更多
We propose a scheme for generation of three-mode W-type entangled coherent states (ECSs) in freetravelling optical fields by using a single-photon source, coherent state sources, beam splitters, photodetectors, and ...We propose a scheme for generation of three-mode W-type entangled coherent states (ECSs) in freetravelling optical fields by using a single-photon source, coherent state sources, beam splitters, photodetectors, and three-mode cross-Kerr media. The scheme consists of a Mach-Zehnder interferometer (MZI) in which each arm contains a cross-Kerr medium. We calculate the success probability of the generated W-type ECSs, and the total success probability is unity under the ideal conditions.展开更多
The performance of broadband polarizing beam splitters(PBSs) is sensitive to the incident angle.By taking account of the spectrum of the laser source and using the needle optimization method,a large acceptance angle P...The performance of broadband polarizing beam splitters(PBSs) is sensitive to the incident angle.By taking account of the spectrum of the laser source and using the needle optimization method,a large acceptance angle PBS for laser-based displays is designed.The average degrees of polarization in transmission and reflection can reach 0.989 and 0.980 for an acceptance angle of 13.6?in air using two materials,while better results of 0.993 and 0.989 for an acceptance angle of 14.8?in air are attained when three common materials are used.Both designs consist of 40 layers.展开更多
Polarization-independent wavelength conversion is demonstrated by using four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA). In this scheme, all the incident fields are split into two orthogon...Polarization-independent wavelength conversion is demonstrated by using four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA). In this scheme, all the incident fields are split into two orthogonal-polarized parts by polarizing beam splitters (PBS). Each of the two parts is then transmitted into one facet of the SOA and they are counter-propagating through the same amplifier. Wavelength conversion with the polarization sensitivity less than 1.3 dB is obtained over a range from 1510 to 1620 nm.展开更多
A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain. By applying Fourier transformation to the recorded spectral interfe...A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain. By applying Fourier transformation to the recorded spectral interference signal, we retrieve the spectral phase function Ф, which is induced by three parts: the path length difference in air L, the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure. We utilize the fact that the overall optical path difference (OPD) is linearly dependent on the refractive index of the beam splitter to determine both L and Teff. The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from Ф. We show theoretically and experimentally that our new method can provide a simple and fast solution in calculating the absolute spectral phase function of optical thin films, while still maintaining high accuracy.展开更多
Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modul...Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution and is the function of average signal power <P(z)> (or z). Compared with the conventional split-step method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.展开更多
Cat mutually pumped phase conjugation configuration is discovered and investigated by using two-wave mixing in (KyNa1-y)2z(SrxBa1-x)1-zNb2O6 (KNSBN) crystal. When only one signal or pumped beam does not give birth to ...Cat mutually pumped phase conjugation configuration is discovered and investigated by using two-wave mixing in (KyNa1-y)2z(SrxBa1-x)1-zNb2O6 (KNSBN) crystal. When only one signal or pumped beam does not give birth to phase conjugation, the maximum reflectivity of signal and pumped beam attain 140% and 30% due to two-wave mixing, respectively. The experimental results show that the two-wave mixing can reduce the threshold of incident beams power, extend the incident angle range, and shorten response rate in the process of self-pumped phase conjugator (SPPC) in KNSBN crystal.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)the Fundamental Research Funds for the Central Universities,China (Grant Nos. ZYGX2011YB020 and ZYGX2010J112)
文摘A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process
文摘To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function's gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit fimction. It has outstanding performance in multilayer optical coating design with a large layer number.
文摘The influences of various laser modes on the splitting beam effect of Dammann grating are studied in theory and by numerical simulation. The results show that fundamental mode laser resembles plane wave while high order mode laser differs from plane wave in the splitting beam effect by Dammann grating. Therefore, the fundamental mode laser is more suitable to be the light source to improve the energy efficiency in far-distance image detecting systems, such as laser image ladar, which use Dammann grating in the ilhlmination svstem.
基金the National Fundamental Research Program(No.2007CB925204)the National Natural Science Foundation of China(No.10325523 and 10775048)the Foundation of the Education Ministry of China,and the Education Committee of Hunan Province.
文摘We propose a scheme for generation of three-mode W-type entangled coherent states (ECSs) in freetravelling optical fields by using a single-photon source, coherent state sources, beam splitters, photodetectors, and three-mode cross-Kerr media. The scheme consists of a Mach-Zehnder interferometer (MZI) in which each arm contains a cross-Kerr medium. We calculate the success probability of the generated W-type ECSs, and the total success probability is unity under the ideal conditions.
基金supported by the National Natural Science Foundation of China (No.50802080)the Natural Science Foundation of Fujian Province (No.2010J01349)
文摘The performance of broadband polarizing beam splitters(PBSs) is sensitive to the incident angle.By taking account of the spectrum of the laser source and using the needle optimization method,a large acceptance angle PBS for laser-based displays is designed.The average degrees of polarization in transmission and reflection can reach 0.989 and 0.980 for an acceptance angle of 13.6?in air using two materials,while better results of 0.993 and 0.989 for an acceptance angle of 14.8?in air are attained when three common materials are used.Both designs consist of 40 layers.
基金This work was supported by the National Natural Science Foundation of China under the Grant No. 10334010
文摘Polarization-independent wavelength conversion is demonstrated by using four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA). In this scheme, all the incident fields are split into two orthogonal-polarized parts by polarizing beam splitters (PBS). Each of the two parts is then transmitted into one facet of the SOA and they are counter-propagating through the same amplifier. Wavelength conversion with the polarization sensitivity less than 1.3 dB is obtained over a range from 1510 to 1620 nm.
基金supported by the National Natural Science Foundation of China under Grant Nos.60708013 and 60608014
文摘A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain. By applying Fourier transformation to the recorded spectral interference signal, we retrieve the spectral phase function Ф, which is induced by three parts: the path length difference in air L, the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure. We utilize the fact that the overall optical path difference (OPD) is linearly dependent on the refractive index of the beam splitter to determine both L and Teff. The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from Ф. We show theoretically and experimentally that our new method can provide a simple and fast solution in calculating the absolute spectral phase function of optical thin films, while still maintaining high accuracy.
基金This work was supported by the National Natural Science Foundation of China (No. 60278001)the Science & Technology Cooperation Foundation of Nakai University, the Ministry of Education.
文摘Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution and is the function of average signal power <P(z)> (or z). Compared with the conventional split-step method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.
基金This work was supported by a grant from the Key Re-search Project No.2 in the Climbing Program from the State Science and Technology Commission of China, and partially supported by the Young National Science Foun-ation of shandong University.
文摘Cat mutually pumped phase conjugation configuration is discovered and investigated by using two-wave mixing in (KyNa1-y)2z(SrxBa1-x)1-zNb2O6 (KNSBN) crystal. When only one signal or pumped beam does not give birth to phase conjugation, the maximum reflectivity of signal and pumped beam attain 140% and 30% due to two-wave mixing, respectively. The experimental results show that the two-wave mixing can reduce the threshold of incident beams power, extend the incident angle range, and shorten response rate in the process of self-pumped phase conjugator (SPPC) in KNSBN crystal.