Demand for precise vehicle positioning(VP)increases as autonomous vehicles have recently been drawing attention.This paper proposes a scheme for positioning vehicles on the move based on optical camera communication(O...Demand for precise vehicle positioning(VP)increases as autonomous vehicles have recently been drawing attention.This paper proposes a scheme for positioning vehicles on the move based on optical camera communication(OCC)technology in the vehicle-to-infrastructure(V2I)environment.Light-emitting diode(LED)streetlights and vehicle cameras are used as transmitters and receivers respectively.Regions of streetlights are detected and traced by examining images that are obtained from cameras of vehicles.Then,a scheme for analyzing visible light data extracted from the images is proposed.The proposed vehicle positioning scheme uses information on angles between vectors that are formed under the collinearity conditions between the absolute coordinates of at least three received streetlights,and the coordinates of an image sensor.The experiments are performed under stationary state and moving state at a speed of 5 and 20 km/h.To verify the reliability of the proposed scheme,a comparison is made between the actual and estimated location of the camera in the stationary state.In addition,the path of a moving vehicle and the estimated path of the vehicle are compared to check the performance of the scheme.The performance of the proposed technique is analyzed and experimental demonstration confirms that the proposed OCC-based VP scheme achieves positioning accuracy of under 1 m.展开更多
OCC(Optical Camera Communication)has been proposed in recent years as a new technique for visible light communications.This paper introduces the implementation and experimental demonstration of an OCC system.Phase unc...OCC(Optical Camera Communication)has been proposed in recent years as a new technique for visible light communications.This paper introduces the implementation and experimental demonstration of an OCC system.Phase uncertainty and phase slipping caused by camera sampling are the two major challenges for OCC.In this paper,we propose a novel modulation scheme called undersampled differential phase shift on–off keying to encode binary data bits without exhibiting any flicker to human eyes.The phase difference between two consecutive samples conveys one-bit information,which can be decoded by a low-frame-rate camera receiver.Error detection techniques are introduced to enhance the reliability of the system.We present the hardware and software design of the proposed system,which is implemented with a Xilinx FPGA and a Logitech commercial camera.Experimental results demonstrate that a bit-error rate of 10−5 can be achieved with 7.15 mW received signal power over a link distance of 15 cm.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(NRF-2018R1A2B6002204).
文摘Demand for precise vehicle positioning(VP)increases as autonomous vehicles have recently been drawing attention.This paper proposes a scheme for positioning vehicles on the move based on optical camera communication(OCC)technology in the vehicle-to-infrastructure(V2I)environment.Light-emitting diode(LED)streetlights and vehicle cameras are used as transmitters and receivers respectively.Regions of streetlights are detected and traced by examining images that are obtained from cameras of vehicles.Then,a scheme for analyzing visible light data extracted from the images is proposed.The proposed vehicle positioning scheme uses information on angles between vectors that are formed under the collinearity conditions between the absolute coordinates of at least three received streetlights,and the coordinates of an image sensor.The experiments are performed under stationary state and moving state at a speed of 5 and 20 km/h.To verify the reliability of the proposed scheme,a comparison is made between the actual and estimated location of the camera in the stationary state.In addition,the path of a moving vehicle and the estimated path of the vehicle are compared to check the performance of the scheme.The performance of the proposed technique is analyzed and experimental demonstration confirms that the proposed OCC-based VP scheme achieves positioning accuracy of under 1 m.
文摘OCC(Optical Camera Communication)has been proposed in recent years as a new technique for visible light communications.This paper introduces the implementation and experimental demonstration of an OCC system.Phase uncertainty and phase slipping caused by camera sampling are the two major challenges for OCC.In this paper,we propose a novel modulation scheme called undersampled differential phase shift on–off keying to encode binary data bits without exhibiting any flicker to human eyes.The phase difference between two consecutive samples conveys one-bit information,which can be decoded by a low-frame-rate camera receiver.Error detection techniques are introduced to enhance the reliability of the system.We present the hardware and software design of the proposed system,which is implemented with a Xilinx FPGA and a Logitech commercial camera.Experimental results demonstrate that a bit-error rate of 10−5 can be achieved with 7.15 mW received signal power over a link distance of 15 cm.