An optical closure study on bio-optical relationships was carried out using radiative transfer model matrix operator method developed by Freie Universitat Berlin. As a case study, the optical closure of bio-optical re...An optical closure study on bio-optical relationships was carried out using radiative transfer model matrix operator method developed by Freie Universitat Berlin. As a case study, the optical closure of bio-optical relationships empirically parameterized with in situ data for the East China Sea was examined. Remote-sensing reflectance (Rrs) was computed from the inherent optical properties predicted by these biooptical relationships and compared with published in situ data. It was found that the simulated Rrs was overestimated for turbid water. To achieve optical closure, bio-optical relationships for absorption and scattering coefficients for suspended particulate matter were adjusted. Furthermore, the results show that the Fournier and Forand phase functions obtained from the adjusted relationships perform better than the Petzold phase function. Therefore, before bio-optical relationships are used for a local sea area, the optical closure should be examined.展开更多
基金Supported by the State Scholarship Fund of the China Scholarship Councilthe National Natural Science Foundation of China(Nos.60638020,41206006,41176021,41276028,41306035)+1 种基金the National Basic Research Program of China(973 Program)(No.2011CB409803,2011CB403503)the State Key Laboratory Program(No.SOED1206)
文摘An optical closure study on bio-optical relationships was carried out using radiative transfer model matrix operator method developed by Freie Universitat Berlin. As a case study, the optical closure of bio-optical relationships empirically parameterized with in situ data for the East China Sea was examined. Remote-sensing reflectance (Rrs) was computed from the inherent optical properties predicted by these biooptical relationships and compared with published in situ data. It was found that the simulated Rrs was overestimated for turbid water. To achieve optical closure, bio-optical relationships for absorption and scattering coefficients for suspended particulate matter were adjusted. Furthermore, the results show that the Fournier and Forand phase functions obtained from the adjusted relationships perform better than the Petzold phase function. Therefore, before bio-optical relationships are used for a local sea area, the optical closure should be examined.