期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
A dual-route optical emission spectroscopy diagnostic with wide spectral range and high wavelength resolution on HL-2A tokamak
1
作者 陈越 高继昆 +10 位作者 龙婷 聂林 高金明 马尧 黄渊 田文静 刘延民 朱晓东 庄革 钟武律 许敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期25-30,共6页
A dual-route optical emission spectroscopy(D-OES)diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2 A tokamak.This diagnostic is composed of an imaging system,a be... A dual-route optical emission spectroscopy(D-OES)diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2 A tokamak.This diagnostic is composed of an imaging system,a beam-splitting system for dual-route measurements,fiber bundles,a spectrometer system,and a control and acquisition system.One route is used to obtain wide-spectral-range spectra,and the other route is used to acquire high-wavelengthresolution line shapes.The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm(@200-1000 nm).The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm(@200-660 nm).The spatial resolution of each route of D-OES is about 4 cm with 11 channels.The temporal resolution is 16 ms at maximum in the single-channel mode.Wide-range spectra(containing Balmer series and a Fulcher band)and highly resolved Ha line shapes are obtained by D-OES in the hydrogen glow discharge in the lab.D-OES measurements are carried out in the high-density deuterium experiments of HL-2A.The electron density n_(e)and deuterium temperature T_(D) in the X-point multifaceted asymmetric radiation from the edge(MARFE)region are derived simultaneously by fitting the measured D_(a) shape.The density n_(e)is observed to increase from~8.7×10^(18)m^(-3)to~7.8×10^(19)m^(-3),and the temperature T_(D)drops from~14.4 eV to~2.3 eV after the onset of MARFE in the discharge#38260. 展开更多
关键词 optical emission spectroscopy Balmer series TOKAMAK
下载PDF
Langmuir Probe and Optical Emission Spectroscopy Studies of Low-Pressure Gas Mixture of CO_2 and N_2 被引量:2
2
作者 E.F.MENDEZ-MARTINEZ P.G.REYES +2 位作者 D.OSORIO-GONZALEZ F.CASTILLO H.MARTINEZ 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第3期314-319,共6页
Optical emission spectroscopy was used to study a gas mixture glow discharge of CO2 and N2 at a total pressure of 1.2 Torr, a power of 100 W and a flow of 16.5 L/min. The emission bands were measured in the wavelength... Optical emission spectroscopy was used to study a gas mixture glow discharge of CO2 and N2 at a total pressure of 1.2 Torr, a power of 100 W and a flow of 16.5 L/min. The emission bands were measured in the wavelength range of 200 nm to 900 nm. The principal species observed were O2^+ (A^2П→ X^2П), CO^+ (A^2П→X^2∑), N2^+ (B^2∑u+ → X^2∑g^+), CO2^+ (A^2∏ → X^2∏), N2(C^3∏u → B^3∏g), O2(b^1∑g^+→ X^3∑g^-), and CO (a^r3∑→a^3∏). The behavior of the band intensities as a function of the N2 percentage is consistent with recent Monte Carlo simulations. The electron temperature and ion density were determined by a double Langmuir probe. The electron temperature was found in the range of 1.55 eV to 2.93 eV, and the electron concentration in the order of 10^10 cm^-3. The electron temperature and ion density at pure N2 and pure CO2 agree with previous measurements. 展开更多
关键词 optical emission spectroscopy glow discharge electron temperature CO2 N2
下载PDF
Time-Resolved Optical Emission Spectroscopy Diagnosis of CO_2 Laser-Produced SnO_2 Plasma 被引量:1
3
作者 兰慧 王新兵 左都罗 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第9期902-906,共5页
The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximmn of 80 ns. The temporal behavior of the s... The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximmn of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn Ⅱ lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm 3 to 1.1×1017^ cm-3, for delay times between 0.1 μs and 2.2 #s. We also investigated the effect of the laser pulse energy on Sn02 plasma. 展开更多
关键词 optical emission spectroscopy laser produced plasma C02 laser electrontemperature electron density
下载PDF
Analysis of optical emission spectroscopy data during silicon etching in SF_(6)/O_(2)/Ar plasma
4
作者 Dong Hwan KIM Jeong Eun CHOI Sang Jeen HONG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第12期117-127,共11页
Silicon etching is an essential process in various applications,and a major challenge for etching process is anisotropic high aspect ratio etching characteristics.The etch profile is determined by the plasma parameter... Silicon etching is an essential process in various applications,and a major challenge for etching process is anisotropic high aspect ratio etching characteristics.The etch profile is determined by the plasma parameters and process parameters.In this study,the plasma state with each process parameters were analyzed through the optical emission spectroscopy(OES)plasma diagnostic sensor by both chemical and physical approaches.Electron temperature and electron density were additionally acquired using the corona model with OES data that provides chemical species information,and the etch profile was evaluated through scanning electron microscope measurement data.The results include changes in profile with gas ratio,bias power,and pressure.We figure out that factors like ion energy and ion angular distribution as well as chemical reaction affect the anisotropic profile. 展开更多
关键词 silicon etching PROFILE optical emission spectroscopy plasma in-formation corona model
下载PDF
Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
5
作者 陈传杰 方忠庆 +3 位作者 杨晓芳 樊永胜 周锋 王如刚 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期480-488,共9页
Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the dischar... Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the discharges are investigated by means of time-resolved imaging and optical emission spectroscopy with respect to the discharge morphology,gas temperature,electron density,and excited species.The evolution of micro-discharges is captured by intensified CCD camera and electrical properties.The gas temperature is diagnosed by a two-temperature fit to the ro-vibrational OH(A^(2)Σ^(+)–X^П(2),0–0)emission band and is found to remain low at 425 K during the discharge pulses.The profile of electron density performed by the Stark broadening of Ha 656.1-nm and He I 667.8-nm lines is uniform across the discharge gap at the initial of discharge and reaches as high as 10^(23)m^(-3).The excited species of He,OH,and H show different spatio-temporal behaviors from each other by the measurement of their emission intensities,which are discussed qualitatively in regard of their plasma kinetics. 展开更多
关键词 atmospheric pressure micro-discharges nanosecond repetitively pulsed discharge HELIUM optical emission spectroscopy
下载PDF
Optical emission spectroscopy study on deposition process of microcrystalline silicon
6
作者 吴志猛 雷青松 +3 位作者 耿新华 赵颖 孙建 奚建平 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第11期2713-2717,共5页
This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced che... This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (Sill^*, H^* and H^*β) are investigated by varying the deposition parameters. The result shows that the discharge power, silane concentrations and substrate temperature affect the OES intensities. When the discharge power at silane concentration of 4% increases, the OES intensities increase first and then are constant, the intensities increase with the discharge power monotonously at silane concentration of 6%. The SiH^* intensity increases with silane concentration, while the intensities of H^*α and H^*β increase first and then decrease. When the substrate temperature increases, the SiH^* intensity decreases and the intensities of H^*α and H^*β are constant. The correlation between the intensity ratio of IH^*α/ISiH^* and the crystalline volume fraction (Xc) of films is confirmed. 展开更多
关键词 microcrystalline silicon VHF-PECVD optical emission spectroscopy
下载PDF
Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH_4/C_2H_4/Ar) Radio-Frequency Discharge
7
作者 吴静 张鹏云 +2 位作者 孙继忠 姚列明 段旭如 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第5期561-566,共6页
Optical emission spectroscopy and Langmuir Probe diagnostics were incorporated into the experiment, in which dust particles were formed in-situ by using reactive mixture gases (SiHa/C2H4/Ar) in a radio-frequency (R... Optical emission spectroscopy and Langmuir Probe diagnostics were incorporated into the experiment, in which dust particles were formed in-situ by using reactive mixture gases (SiHa/C2H4/Ar) in a radio-frequency (RF) discharge plasma. The excitation temperature was first calculated by combining several optical emission spectra of argon lines and using a Boltzmann distribution to fit the experimental data, then the excitation temperature as functions of both gas pressure and RF power in SiH4/C2Ha/Ar discharges for different discharge conditions were obtained. Correspondingly, based on the measurement of the electron temperature by a Langmuir probe, the excitation temperature was compared with the electron temperature, and some discussions were presented. Finally the emission intensities of spectral lines of Si 390.6 ran, Si2+ 380.6 nm and C+ 426.7 nm were measured and presented as functions of pressure, RF power and flow rate of SiH4/C2H4. 展开更多
关键词 RF discharge optical emission spectroscopy Langmuir probe
下载PDF
Determination of Non-Maxwellian Electron Energy Distributions in Low-Pressure Plasmas by Using the Optical Emission Spectroscopy and a Collisional-Radiative Model
8
作者 朱悉铭 蒲以康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第3期267-278,共12页
A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases,... A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and kryp- ton atoms. For applications of this approach in reactive gas (CF4, O2, etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail. 展开更多
关键词 plasma diagnostics optical emission spectroscopy non-Maxwellian EEDF collisional-radiative model
下载PDF
Characteristics of C_2 Radical in CHF_3 and CF_4 Electron Cyclotron Resonance Plasmas Studied by Optical Emission Spectroscopy
9
作者 杜伟 叶超 +1 位作者 程珊华 宁兆元 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第6期1535-1540,共6页
The characteristics of CHF3 and CF4 electron cyclotron resonance (ECR) plasma have been studied by optical emission spectroscopy (OES) and Langmuir probe. It is found that C2 radical is one of main compositions in bot... The characteristics of CHF3 and CF4 electron cyclotron resonance (ECR) plasma have been studied by optical emission spectroscopy (OES) and Langmuir probe. It is found that C2 radical is one of main compositions in both of the two plasmas. We investigated the relative concentration of C2 radical as a function of F (H) radical and ion density. The formation mechanism of C2 radical is analyzed. 展开更多
关键词 ECR plasma optical emission spectroscopy fluorocarbon gas
下载PDF
Diagnostics of Argon Inductively Coupled Plasma and Dielectric Barrier Discharge Plasma by Optical Emission Spectroscopy
10
作者 张家良 俞世吉 +1 位作者 马滕才 邓新绿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第4期883-890,共8页
An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES fro... An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES from argon ICP and DBD plasmas in visible and near ultraviolet region were measured. For argon ICP, the higher RF power input (higher than 500 W for our machine), the higher degree of argon plasma ionization. But that doesn't mean a higher mean electron energy. With the increase in the power input, the mean electron energy increases slightly, whereas the density of electron increases apparently On the contrary, argon DBD discharge behaves in the manner of a pulsed DC discharge on optical emission spectroscopy and V-I characteristics. DBD current is composed of a series of pulses equally spaced in temporal domain. The Kinetics of DBD emission strength is mainly governed by the frequency of the current pulse. 展开更多
关键词 In ICP Diagnostics of Argon Inductively Coupled Plasma and Dielectric Barrier Discharge Plasma by optical emission spectroscopy
下载PDF
A novel optical emission spectroscopy method for diagnostics of contribution of different ionization mechanisms and flux of ions in different valences in discharge channel of a Hall thruster
11
作者 Yanfei WANG Ximing ZHU +4 位作者 Renqiu ZOU Shilin YAN Junwei JIA Zhongxi NING Daren YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期294-307,共14页
The mass application of Hall thrusters poses the need for a diagnostic method of ionization mechanism in the discharge channel to boost the iteration and optimization of thruster design.This work presents an Optical E... The mass application of Hall thrusters poses the need for a diagnostic method of ionization mechanism in the discharge channel to boost the iteration and optimization of thruster design.This work presents an Optical Emission Spectroscopy (OES) method for diagnostics of the contribution of different ionization mechanisms and the flux of ions in different valences in the discharge channel of a Hall thruster.The emission spectra in the discharge channel are analyzed by jointly utilizing a collisional-radiative model,an ionization-excitation model,and a flux-conservation model.It is found that the intensities of some spectral lines can be converted into the reaction rates of collision processes,e.g.,electron-induced excitation and ionization processes.The latter can further be used to determine the evolutions of particle fluxes by utilizing the conservation law of matter.The novel method is demonstrated on a kilo-watt Hall thruster.The evolutions of several parameters are determined using this method along the discharge channel,including the ionization rates of different mechanisms,particle fluxes,particle densities,and particle velocities.This novel method can be further developed by being jointly utilized with spectral imaging and tomography techniques,enabling diagnostics of multi-dimensional distributions of the above-mentioned parameters in the discharge channel and near-field plume. 展开更多
关键词 Hall thruster optical emission spectroscopy Ionization mechanism Particle flux Divalent ion
原文传递
Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach 被引量:2
12
作者 王勇 李聪 +2 位作者 石劼霖 吴兴伟 丁洪斌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第11期23-30,共8页
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and elec... As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma. 展开更多
关键词 laser Thomson scattering optical emission spectroscopy cascaded arc plasma electron density electron temperature electron excitation temperature
下载PDF
Optical Emission Spectroscopic Measurement of Hydroxyl Radicals in Air Discharge with Atomized Water 被引量:1
13
作者 孙明 陈维刚 张颖 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第4期470-473,共4页
Effects of discharge mode, voltage applied, size of the nozzle discharge electrode and flow rate of water on the generation of hydroxyl radical were investigated in air discharge with atomized water, by using optical ... Effects of discharge mode, voltage applied, size of the nozzle discharge electrode and flow rate of water on the generation of hydroxyl radical were investigated in air discharge with atomized water, by using optical emission spectroscopy (OES). Water was injected into the discharge region through the discharge nozzle electrode, and a large amount of fine water drops, formed and distributed in the discharge region, corona discharge was more effective to generate were observed. It was found that negative DC the hydroxyl radicals in comparison to positive DC corona discharge or negative pulsed discharge. A larger outer diameter of the nozzle electrode or a stronger electric field is beneficial for hydroxyl-radical generation. Moreover, there is a critical value in the flow rate of atomized water against the discharge voltage. Below this critical value, hydroxyl-radical generation increases with the increase in flow rate of the water, while above this value, it decreases. In addition, it is observed that OES from the discharge is mainly in the ultraviolet domain. The results are helpful in the study of the mechanism and application of plasma in pollution-control in either air or water. 展开更多
关键词 PLASMA DISCHARGE ATOMIZATION hydroxyl radicals optical emission spectroscopy
下载PDF
Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity 被引量:1
14
作者 F.MARCHAL M.YOUSFI +2 位作者 N.MERBAHI G.WATTIEAUX A.PIQUEMAL 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第3期259-265,共7页
Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a c... Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2~) is also added in the mixture in order to collect OH(A- X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09× 1017+ 0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×101T cm-3. 展开更多
关键词 TALIF microwave air plasma atomic oxygen concentration actinometry optical emission spectroscopy
下载PDF
Characterization of Nitrogen Glow Discharge Plasma via Optical Emission Spectrum Simulation 被引量:1
15
作者 张连珠 赵书霞 孟秀兰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第4期455-462,共8页
Optical emission spectroscopy in nitrogen glow discharge plasma is simulated, and the collision excitations and characteristic emissions of the species (N2, N2^+, N^+, N) are investigated by a Monte Carlo model fo... Optical emission spectroscopy in nitrogen glow discharge plasma is simulated, and the collision excitations and characteristic emissions of the species (N2, N2^+, N^+, N) are investigated by a Monte Carlo model for nitrogen molecular gas discharge. The excitation rates of the main excited states are calculated and the corresponding relation and relative magnitude between the distribution of excitation rate of a certain excited state and the distributions of the emission rates of various lines originating from this excited level are also explored. The simulated results are compared with the experimental measurements in two typical discharge conditions. The luminescence mechanism of the line N2^+: 391.4 nm is explained based on the microscopic plasma processes. The cathode glow in N2 discharge is found to be mainly caused by N^+ impact excitation and the intensity of cathode glow decreases with the voltage. The corresponding relation between the emission rate or intensity of the 391.4 nm line and the production rate and the density of N2^+ is also examined. 展开更多
关键词 nitrogen glow discharge optical emission spectroscopy Monte Carlo simulation
下载PDF
Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions
16
作者 H.MARTINEZ O. FLORES +1 位作者 J.C. POVEDA B. CAMPILLO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第4期303-311,共9页
Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-pla... Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05)× 10^16 m^-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N2+, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time. 展开更多
关键词 ASPHALTENE EROSION surface analysis optical emission spectroscopy pulsedplasma GLOW DISCHARGE
下载PDF
Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD
17
作者 侯国付 耿新华 +3 位作者 张晓丹 孙建 张建军 赵颖 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期440-445,共6页
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process an... A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si-H stretching mode shifts from 2000 cm-1 to 2100 cm-1, while the peak frequency of the Si-H wagging-rocking mode shifts from 650 cm-1 to 620 cm-1. At the same time the SiH^*/Ha intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the p-c-SiH formation have been analyzed based on the variation of Ha and SiH^* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study. 展开更多
关键词 Fourier transfer infrared spectroscopy optical emission spectroscopy Si H bonding con-figuration oxygen impurity
下载PDF
Optical Emission Spectroscopic Studies of ICP Ar Plasma
18
作者 齐雪莲 任春生 +1 位作者 张健 马腾才 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第5期578-581,共4页
The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-... The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-frequency (RF) power and different positions in the discharge chamber on the line intensities were investigated in this study. It was found that the intensity of Ar atom line increased firstly and then saturated with the increase of the pressure. The line intensity of Ar^+, on the other hand, reached a maximum value and then decreased along with the pressure. The intensity of the line in an RF discharge also demonstrated a jumping mode and a hysteresis phenomenon with the RF power. When the RF power increased to 400 W, the discharge jumped from the E-mode to the H-mode where the line intensity of Ar atom demonstrated a sudden increase, while the intensity of Ar^+ ion only changed slightly. If the RF power decreased from a high value, e.g., 1000 W, the discharge would jump from the H-mode back to the E-mode at a power of 300 W. At this time the intensities of Ar and Ar^+ lines would also decrease sharply. It was also noticed in this paper that the intensity of the ion line depended on the detective location in the chamber, namely at the bottom of the chamber the line was more intense than that in the middle of the chamber, but less intense than at the top, which is considered to be related to the capacitance coupling ability of the ICP plasma in different discharge areas. 展开更多
关键词 optical emission spectroscopy inductively coupled plasma spectral line intensity AR
下载PDF
Optical Emission Spectroscopic Study During the Evaporation of Aluminium in the Thermal Plasma Reactor
19
作者 I.BANERJEE N.V.KULKARNI +3 位作者 S.KARMAKER V.L.MATHE S.V.BHORASKAR A.K.DAS 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第1期27-30,共4页
The oxidation of aluminium was studied using optical emission spectroscopy (OES) during the evaporation of aluminium in traces of oxygen in a thermal plasma reactor. The ratio of the measured line intensities of Al-... The oxidation of aluminium was studied using optical emission spectroscopy (OES) during the evaporation of aluminium in traces of oxygen in a thermal plasma reactor. The ratio of the measured line intensities of Al-O with that of Al follows the exact trend as of that obtained from the corresponding line intensities in X-ray diffraction spectra of the synthesized samples. In this paper the inherent capacity of emission spectroscopy in evaluating the growth processes under plasma induced reactions is presented. 展开更多
关键词 thermal plasma reactor aluminium OXIDATION optical emission spectroscopy X-ray diffraction
下载PDF
A Study on Optical Emission of CF_4+CH_4 Plasma and Deposition Mechanisms of a-C : F, H Films
20
作者 黄松 辛煜 宁兆元 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第1期2669-2672,共4页
Fluorinated amorphous carbon (a-C : F,H) films were deposited by inductively coupled plasma using CH4 and CF4 gases. Actinometrical optical emission spectroscopy (AOES) was used to determine the relative concentration... Fluorinated amorphous carbon (a-C : F,H) films were deposited by inductively coupled plasma using CH4 and CF4 gases. Actinometrical optical emission spectroscopy (AOES) was used to determine the relative concentrations of various radicals, CF, CF2 CH, C2, H and F, in the plasma as a function of gas flow ratio R, R= [CH4]/([CH4]+[CF4]). The structural evolution of the films were characterized by Fourier transform infrared transmission (FTIR) spectroscopy. The relationship between the film deposition and the precursor radicals in the plasma was discussed. It was shown that CH radical, as well as CF, CF2, C2 radicals are of the precursors, contributing to a-C : F, H film growth. 展开更多
关键词 optical emission spectroscopy fluorinated carbon film FTIR
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部