We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our ...The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller ...A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another advantage of the scheme is that only one cavity is required.展开更多
Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model corre...Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field ...Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.展开更多
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved t...Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.展开更多
The entanglement of two atomic qubits, which are coupled to a coherent state field with different couplings, is studied. The dynamical evolution of the concurrence, which measures the degree of the entanglement betwee...The entanglement of two atomic qubits, which are coupled to a coherent state field with different couplings, is studied. The dynamical evolution of the concurrence, which measures the degree of the entanglement between the two qubits, is plotted versus the scaled time gt. It is found that the two qubits can be entangled by the coherent state field even when they are initially prepared in the most mixed state, and for very weak field, the most mixed state can be; more easily entangled than some pure states. It is also found that the entanglement between the qubits sensitively depends on the relative difference of the atomic couplings and the mean photon number of the field.展开更多
Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on sque...Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on squeeze angle and squeeze parameter is discussed. It shows that the system evolves into entangled states and entanglement does not increase persistently with the increase of squeeze angle and squeeze parameter. There only exists a certain squeeze angle in which the entanglement exists continuously.展开更多
A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is gre...A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is greatly reduced, which is important in view of decoherence. Furthermore, the scheme does not need accurate adjustment of the interaction time.展开更多
We calculate the energy levels of He+ ion placed in a uniform magnetic field directed perpendicular to the direction of its center of mass (CM) velocity vector, correct to relative order . Our calculations are within ...We calculate the energy levels of He+ ion placed in a uniform magnetic field directed perpendicular to the direction of its center of mass (CM) velocity vector, correct to relative order . Our calculations are within the frame work of an approximately relativistic theory, correct to relative order , of a two-particle composite system bound by electromagnetic forces, and written in terms of the position, momentum and spin operators of the constituent particles as proposed by Krajcik and Foldy, and also by Close and Osborn. Since the He+ ion has a net electric charge, the total or the CM momentum is not conserved and a neat separation of the CM and the internal motion is not possible. What is new in our approach is that, for the basis states in a first order degenerate perturbation theory to calculate the effects of the external magnetic field, we use the direct product of the coherent state of the Landau Hamiltonian of the He+ ion in a uniform magnetic field and of the simultaneous eigenstate of the internal Hamiltonian h, j2, l2, s2 and jz,?where j, l and s are the internal total, orbital and spin angular moments of the He+ ion. The coherent state is an excellent approximation to the expected classical circular motion of the center of mass (CM) of the He+ ion. In addition to the Z2 a2 corrections to the usual nonrelativistic results, including the small corrections due to the nuclear motion, we also obtain corrections which depend on the kinetic energy (ECM ) of the CM circular motion of the He+ ion, in a nontrivial way. Even though these corrections are proportional to , where M is the mass of the He+ ion, and are small for nonrelativistic CM motion, the results should be verifiable in careful experiments. Our results may also have application in astrophysical observations of the spectral lines of He+ ions in magnetized astrophysical objects.展开更多
AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary ne...AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.展开更多
When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fie...When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.展开更多
A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherentpotential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. T...A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherentpotential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tij^mn(m ≠ n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.展开更多
Based on the atom-cavity-field interaction, this paper proposes a scheme for the teleportation of a bipartite entangled coherent state (ECS) with high fidelity as long as │α│ is not too small. In this proposal, o...Based on the atom-cavity-field interaction, this paper proposes a scheme for the teleportation of a bipartite entangled coherent state (ECS) with high fidelity as long as │α│ is not too small. In this proposal, only four cavities and a three-level cascade atom are needed. The fidelity of the ECS is calculated and analysed in detail.展开更多
In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial stat...In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial states of the two atoms lead to different evolutions of field entropy and the intensity of the field plays an important role for the evolution properties of field entropy.展开更多
A scheme to prepare superpositions of squeezed coherent states is presented.It involves an appropriately prepared atom crossing a high-Q cavity initially filled with a squeezed coherent field.After the nonresonant int...A scheme to prepare superpositions of squeezed coherent states is presented.It involves an appropriately prepared atom crossing a high-Q cavity initially filled with a squeezed coherent field.After the nonresonant interaction with the cavity field the detection of the atomic state leaves the cavity field in a superposition of two squeezed coherent states.展开更多
If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency ...If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.展开更多
A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-fieldseeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely...A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-fieldseeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely owing to the optical Stark effect. Simulations suggest that the present scheme is superior to previous Stark decelerators. Under typical experimental conditions, when the assisting laser frequency is red-detuned to the molecular transition(λ~606.3 nm) by5.0 GHz and the laser power is about 5.6 W, the proposed decelerator can achieve a total number at the order of 10~4 CaF molecules with a number density at the order of 10~8 cm^(-3). The equivalent temperature of the obtained cold CaF molecules is 2.3 mK. Additionally, the desired assisting laser power can be as low as about 1.2 W if keeping the red-detuning value to be 1.0 GHz, which further suggests its experimental feasibility.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
基金Project supported by the Natural Science Foundation of Shaanxi Province (Grant No 2001SL04), the Scientific and Technological Key Program Foundation of Shaanxi Province (Grant No 2002K05-G9).
文摘The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.
基金Project supported by Fok Ying Tung Education Foundation (Grant No 81008), the National Natural Science Foundation of China (Grant No 10225421).
文摘A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another advantage of the scheme is that only one cavity is required.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347127,61404044,and 11347111)
文摘Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103 and 10574143), and the National Basic Research Program of China (Grant No 2001CB309309).
文摘Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374007
文摘The entanglement of two atomic qubits, which are coupled to a coherent state field with different couplings, is studied. The dynamical evolution of the concurrence, which measures the degree of the entanglement between the two qubits, is plotted versus the scaled time gt. It is found that the two qubits can be entangled by the coherent state field even when they are initially prepared in the most mixed state, and for very weak field, the most mixed state can be; more easily entangled than some pure states. It is also found that the entanglement between the qubits sensitively depends on the relative difference of the atomic couplings and the mean photon number of the field.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on squeeze angle and squeeze parameter is discussed. It shows that the system evolves into entangled states and entanglement does not increase persistently with the increase of squeeze angle and squeeze parameter. There only exists a certain squeeze angle in which the entanglement exists continuously.
基金The project supported by the Natural Science Foundation of Education Committee of Fujian Province of China under Grant No. JB03047.
文摘A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is greatly reduced, which is important in view of decoherence. Furthermore, the scheme does not need accurate adjustment of the interaction time.
文摘We calculate the energy levels of He+ ion placed in a uniform magnetic field directed perpendicular to the direction of its center of mass (CM) velocity vector, correct to relative order . Our calculations are within the frame work of an approximately relativistic theory, correct to relative order , of a two-particle composite system bound by electromagnetic forces, and written in terms of the position, momentum and spin operators of the constituent particles as proposed by Krajcik and Foldy, and also by Close and Osborn. Since the He+ ion has a net electric charge, the total or the CM momentum is not conserved and a neat separation of the CM and the internal motion is not possible. What is new in our approach is that, for the basis states in a first order degenerate perturbation theory to calculate the effects of the external magnetic field, we use the direct product of the coherent state of the Landau Hamiltonian of the He+ ion in a uniform magnetic field and of the simultaneous eigenstate of the internal Hamiltonian h, j2, l2, s2 and jz,?where j, l and s are the internal total, orbital and spin angular moments of the He+ ion. The coherent state is an excellent approximation to the expected classical circular motion of the center of mass (CM) of the He+ ion. In addition to the Z2 a2 corrections to the usual nonrelativistic results, including the small corrections due to the nuclear motion, we also obtain corrections which depend on the kinetic energy (ECM ) of the CM circular motion of the He+ ion, in a nontrivial way. Even though these corrections are proportional to , where M is the mass of the He+ ion, and are small for nonrelativistic CM motion, the results should be verifiable in careful experiments. Our results may also have application in astrophysical observations of the spectral lines of He+ ions in magnetized astrophysical objects.
文摘AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10175029, 10375039, and 10647007, the Doctoral Education Fund of Ministry of Education, the Research Fund of Nuclear Theory Center of HIRFL of China, and the Science and Technology Foundation of Sichuan Province under Grant No. 02GY029-189
文摘When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.
基金Project supported by the National Natural Science Foundation of China (Grant No 60476047)the Natural Science Foundation of Henan Province, China (Grant No 0411011700)
文摘A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherentpotential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tij^mn(m ≠ n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.
文摘Based on the atom-cavity-field interaction, this paper proposes a scheme for the teleportation of a bipartite entangled coherent state (ECS) with high fidelity as long as │α│ is not too small. In this proposal, only four cavities and a three-level cascade atom are needed. The fidelity of the ECS is calculated and analysed in detail.
基金the Science Foundation of China University of Petroleum under Grant No. Y061815
文摘In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial states of the two atoms lead to different evolutions of field entropy and the intensity of the field plays an important role for the evolution properties of field entropy.
基金Supported by the National Natural Science Foundation of China under Grant No.19474044.
文摘A scheme to prepare superpositions of squeezed coherent states is presented.It involves an appropriately prepared atom crossing a high-Q cavity initially filled with a squeezed coherent field.After the nonresonant interaction with the cavity field the detection of the atomic state leaves the cavity field in a superposition of two squeezed coherent states.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775100 and 10974137
文摘If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604164)
文摘A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-fieldseeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely owing to the optical Stark effect. Simulations suggest that the present scheme is superior to previous Stark decelerators. Under typical experimental conditions, when the assisting laser frequency is red-detuned to the molecular transition(λ~606.3 nm) by5.0 GHz and the laser power is about 5.6 W, the proposed decelerator can achieve a total number at the order of 10~4 CaF molecules with a number density at the order of 10~8 cm^(-3). The equivalent temperature of the obtained cold CaF molecules is 2.3 mK. Additionally, the desired assisting laser power can be as low as about 1.2 W if keeping the red-detuning value to be 1.0 GHz, which further suggests its experimental feasibility.