The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective f...The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.展开更多
The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing(WDM)communication systems thanks to its compatibility with chip integration.However,the soliton microcomb c...The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing(WDM)communication systems thanks to its compatibility with chip integration.However,the soliton microcomb commonly suffers from a low-power level due to the intrinsically limited energy conversion efficiency from the continuous-wave pump laser to ultra-short solitary pulses.Here,we exploit laser injection locking to amplify and equalize dissipative Kerr soliton comb lines,superior gain factor larger than 30 dB,and optical-signal-to-noise-ratio(OSNR)as high as 60 dB obtained experimentally,providing a potential pathway to constitute a high-power chip-integrated WDM laser source for optical communications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62005215)。
文摘The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.
基金supported by the National Key R&D Program of China(Nos.2019YFB-2203103 and 2018YFA0307400)the National Natural Science Foundation of China(NSFC)(Nos.62001086 and 61705033)。
文摘The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing(WDM)communication systems thanks to its compatibility with chip integration.However,the soliton microcomb commonly suffers from a low-power level due to the intrinsically limited energy conversion efficiency from the continuous-wave pump laser to ultra-short solitary pulses.Here,we exploit laser injection locking to amplify and equalize dissipative Kerr soliton comb lines,superior gain factor larger than 30 dB,and optical-signal-to-noise-ratio(OSNR)as high as 60 dB obtained experimentally,providing a potential pathway to constitute a high-power chip-integrated WDM laser source for optical communications.