Optical methods for life sciences is a very comprehensive subject.Especially in this era,scientific discoveries depend on more and more interdisciplinary cooperation.
Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance p...Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.展开更多
The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 an...The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
Known as laser trapping,optical tweezers,with nanometer accuracy and pico-newton precision,plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines.In order to advance the fl...Known as laser trapping,optical tweezers,with nanometer accuracy and pico-newton precision,plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines.In order to advance the flourishing applications for those achievements,it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field.In this paper,we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers.With the influence of viscosity force and torque taken into account,we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle.The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process.Even in a simple pair of optical tweezers,the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration,deceleration,and turning.These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.展开更多
The development of blue semiconductor light-emitting diodes(LEDs)has produced potential applications for Prdoped materials that can absorb blue light,especially crystals,and we now report structure and optical propert...The development of blue semiconductor light-emitting diodes(LEDs)has produced potential applications for Prdoped materials that can absorb blue light,especially crystals,and we now report structure and optical properties for high-quality Pr-doped single crystals of yttria-stabilized zirconia(YSZ)grown by the optical floating zone(FZ)method.X-ray diffraction(XRD)and Raman spectroscopy showed that all of the single crystal samples were in the cubic phase,whereas the corresponding ceramic samples contained a mixture of monoclinic and cubic phases.X-ray photoelectron spectroscopy(XPS)and electron paramagnetic resonance(EPR)spectroscopy showed that Pr was present as the Pr^(3+)ion in ceramic rods and single crystals after heating to high temperatures.The absorption and photoluminescence excitation(PLE)spectra of the Pr-doped YSZ crystals measured at room temperature showed strong absorption of blue light,while their photoluminescence(PL)spectra showed five emission peaks at 565 nm,588 nm,614 nm,638 nm,and 716 nm under450 nm excitation.The optimum luminescence properties were obtained with the crystal prepared using 0.15 mol%Pr_(6)O_(11),and those with higher concentrations showed evidence of quenching of the luminescence properties.In addition,the color purity of Pr-doped YSZ single crystal reached 98.9%in the orange–red region.展开更多
In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only ...In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only Look Once v3) and local optical flow method. Based on the dense optical flow method, the optical flow modulus of the area where the human target is detected is calculated to reduce the amount of computation and save the cost in terms of time. And then, a threshold value is set to complete the human behavior identification. Through design algorithm, experimental verification and other steps, the walking, running and falling state of human body in real life indoor sports video was identified. Experimental results show that this algorithm is more advantageous for jogging behavior recognition.展开更多
An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were...The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.展开更多
A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crac...A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.展开更多
The harm of the phenolic compounds to environment was discussed in this paper. The progress of international methods for phenolic compounds was reviewed from 1938 to the end of 1995. The references dealt mainly with t...The harm of the phenolic compounds to environment was discussed in this paper. The progress of international methods for phenolic compounds was reviewed from 1938 to the end of 1995. The references dealt mainly with the progress of study on optical determining methods, e.g. visible , UV , derivative , fluorescent , infrared absorptive , atomic absorptive photometries for phenolic compounds in waste water, and application of the above mentioned methods in environmental monitoring.展开更多
Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is ext...Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is extended to the two-mode case, which gives the decomposition of the entangled Fresnel operator, corresponding to the decomposition of ray transfer matrix [A, B, C, D]. The EFO can unify those optical operators in two-mode case. Various decompositions of EFO into the exponential canonical operators are obtained. The entangled state representation is useful in the research.展开更多
We find that the mapping from classical optical transformations to the optical operator method can be realized by using the coherent state representation and the technique of integration within an ordered product of o...We find that the mapping from classical optical transformations to the optical operator method can be realized by using the coherent state representation and the technique of integration within an ordered product of operators. The optical Fresnel operator derived in (Commun. Theor. Phys. (Beijing, China) 38 (2002) 147) can unify those frequently used optical operators. Various decompositions of Fresnel operator into the exponential canonical operators are obtained.展开更多
Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and la...Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and laboratory demonstration performance of an OVC based on liquid crystal polymers (LCPs) at 633 nm and 1520 nm. The OVC can deliver good performance in laboratory tests and achieve a contrast of 10-6 at an angular distance of 3A/D, which can be implemented for imaging young giant exoplanets in combination with extreme adaptive optics.展开更多
Columbite Zn0.8Co0.2Nb2O6 crystals were grown by optical floating zone methods. The x-ray diffraction(XRD) was used to check the structure information of the grown Zn0.8Co0.2Nb2O6 crystal. The room temperature and tem...Columbite Zn0.8Co0.2Nb2O6 crystals were grown by optical floating zone methods. The x-ray diffraction(XRD) was used to check the structure information of the grown Zn0.8Co0.2Nb2O6 crystal. The room temperature and temperature-dependent Raman spectra were tested to investigate the optical phonon behaviors of columbite Zn0.8Co0.2Nb2O6, which exhibited a temperature stable property. The magnetics properties of Zn0.8Co0.2Nb2O6, measured by a physical property measurement system(PPMS), were also presented in this work.展开更多
Sea ice velocity impacts the distribution of sea ice,and the flux of exported sea ice through the Fram Strait increases with increasing ice velocity.Therefore,improving the accuracy of estimates of the sea ice velocit...Sea ice velocity impacts the distribution of sea ice,and the flux of exported sea ice through the Fram Strait increases with increasing ice velocity.Therefore,improving the accuracy of estimates of the sea ice velocity is important.We introduce a pyramid algorithm into the Horn-Schunck optical flow(HS-OF)method(to develop the PHS-OF method).Before calculating the sea ice velocity,we generate multilayer pyramid images from an original brightness temperature image.Then,the sea ice velocity of the pyramid layer is calculated,and the ice velocity in the original image is calculated by layer iteration.Winter Arctic sea ice velocities from 2014 to 2016 are obtained and used to discuss the accuracy of the HS-OF method and PHS-OF(specifically the 2-layer PHS-OF(2 LPHS-OF)and 4-layer PHS-OF(4 LPHS-OF))methods.The results prove that the PHS-OF method indeed improves the accuracy of sea ice velocity estimates,and the 2 LPHS-OF scheme is more appropriate for estimating ice velocity.The error is smaller for the 2 LPHS-OF velocity estimates than values from the Ocean and Sea Ice Satellite Application Facility and the Copernicus Marine Environment Monitoring Service,and estimates of changes in velocity by the 2 LPHS-OF method are consistent with those from the National Snow and Ice Data Center.Sea ice undergoes two main motion patterns,i.e.,transpolar drift and the Beaufort Gyre.In addition,cyclonic and anticyclonic ice drift occurred during winter 2016.Variations in sea ice velocity are related to the open water area,sea ice retreat time and length of the open water season.展开更多
The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field...The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.展开更多
To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coa...To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.展开更多
Light beam deflections caused by stress or strain gradients are inves- tigated analytically and experimentally in homogeneous beam specimens which are subjected to a particular case of flexure with shear. This study i...Light beam deflections caused by stress or strain gradients are inves- tigated analytically and experimentally in homogeneous beam specimens which are subjected to a particular case of flexure with shear. This study is a generalization of the prior an alytical-experimental examination of strain-gradient light deflections produced in stressed plates, which had concentrated on the simplest case where in- formation of interest is collected along a line of symmetry of the stress field. Main purpose of the present investigation is to document the efficacy of the strain-gradient method in analysis of the general case of stress state. The most interesting stress state is that in a beam subjected to the Saint-Venant bending, where the transversal and the longitudinal axes of the beam are in pure shear. The obtained results are compared with the predictions of the developed analytical models and with the pre- dictions of Filon's stress function. The procedures of evaluating the photoelastic and material coefficients using strain-gradient techniques were tested positively.展开更多
The source of energy for life is the tissue mitochondria and they demand a complex chain of biochemicals to ensure proper physiological function.Classically,the blood levels,and not the tissue levels of these metaboli...The source of energy for life is the tissue mitochondria and they demand a complex chain of biochemicals to ensure proper physiological function.Classically,the blood levels,and not the tissue levels of these metabolites,are determined by expensive and time-consuming biochemical analyses.Since the tissue mitochondria are the consumers of the substrates of glycolysis and of fatty acid metabolism,their redox state is a unique accessible monitor of tissue metabolism and its blockade due to toxins.展开更多
文摘Optical methods for life sciences is a very comprehensive subject.Especially in this era,scientific discoveries depend on more and more interdisciplinary cooperation.
文摘Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.
文摘The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
基金This work is supported by the National Natural Science Foundation of China(Grant No.11974119 and No.11804399)the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)+1 种基金the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(Grant No.CZQ20018)National Key R&D Program of China(No.2018YFA 0306200).
文摘Known as laser trapping,optical tweezers,with nanometer accuracy and pico-newton precision,plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines.In order to advance the flourishing applications for those achievements,it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field.In this paper,we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers.With the influence of viscosity force and torque taken into account,we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle.The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process.Even in a simple pair of optical tweezers,the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration,deceleration,and turning.These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.
基金the National Natural Science Foundation of China(Grant No.11975004)the Key Research and Development Plan Project of Guangxi,China(Grant No.Guike AB18281007)。
文摘The development of blue semiconductor light-emitting diodes(LEDs)has produced potential applications for Prdoped materials that can absorb blue light,especially crystals,and we now report structure and optical properties for high-quality Pr-doped single crystals of yttria-stabilized zirconia(YSZ)grown by the optical floating zone(FZ)method.X-ray diffraction(XRD)and Raman spectroscopy showed that all of the single crystal samples were in the cubic phase,whereas the corresponding ceramic samples contained a mixture of monoclinic and cubic phases.X-ray photoelectron spectroscopy(XPS)and electron paramagnetic resonance(EPR)spectroscopy showed that Pr was present as the Pr^(3+)ion in ceramic rods and single crystals after heating to high temperatures.The absorption and photoluminescence excitation(PLE)spectra of the Pr-doped YSZ crystals measured at room temperature showed strong absorption of blue light,while their photoluminescence(PL)spectra showed five emission peaks at 565 nm,588 nm,614 nm,638 nm,and 716 nm under450 nm excitation.The optimum luminescence properties were obtained with the crystal prepared using 0.15 mol%Pr_(6)O_(11),and those with higher concentrations showed evidence of quenching of the luminescence properties.In addition,the color purity of Pr-doped YSZ single crystal reached 98.9%in the orange–red region.
文摘In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only Look Once v3) and local optical flow method. Based on the dense optical flow method, the optical flow modulus of the area where the human target is detected is calculated to reduce the amount of computation and save the cost in terms of time. And then, a threshold value is set to complete the human behavior identification. Through design algorithm, experimental verification and other steps, the walking, running and falling state of human body in real life indoor sports video was identified. Experimental results show that this algorithm is more advantageous for jogging behavior recognition.
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
基金Funded by the National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientifi c Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB932903 and 2012CB932904)the National Natural Science Foundation of China(Grant Nos.51372270,11474333,and 21173260)
文摘A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.
文摘The harm of the phenolic compounds to environment was discussed in this paper. The progress of international methods for phenolic compounds was reviewed from 1938 to the end of 1995. The references dealt mainly with the progress of study on optical determining methods, e.g. visible , UV , derivative , fluorescent , infrared absorptive , atomic absorptive photometries for phenolic compounds in waste water, and application of the above mentioned methods in environmental monitoring.
基金Supported by the National Natural Science Foundation of China under Grant No. 10775097the Research Foundation of the Education Department of Jiangxi Province of China under Grant No. GJJ10097
文摘Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is extended to the two-mode case, which gives the decomposition of the entangled Fresnel operator, corresponding to the decomposition of ray transfer matrix [A, B, C, D]. The EFO can unify those optical operators in two-mode case. Various decompositions of EFO into the exponential canonical operators are obtained. The entangled state representation is useful in the research.
基金The project supported by National Natural Science Foundation of China under Grant No.10475056
文摘We find that the mapping from classical optical transformations to the optical operator method can be realized by using the coherent state representation and the technique of integration within an ordered product of operators. The optical Fresnel operator derived in (Commun. Theor. Phys. (Beijing, China) 38 (2002) 147) can unify those frequently used optical operators. Various decompositions of Fresnel operator into the exponential canonical operators are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.11661161011,11433007,11220101001,11328302 and 11373005)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA04075200)+2 种基金the International Partnership Program of Chinese Academy of Sciences(Grant Nos.114A32KYSB20160018 and 114A32KYSB20160057)the special fund for astronomy of CAS(2015–2016)Part of the work described in this paper was carried out at California State University,Northridge,with support from the Mt.Cuba Astronomical Foundation
文摘Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and laboratory demonstration performance of an OVC based on liquid crystal polymers (LCPs) at 633 nm and 1520 nm. The OVC can deliver good performance in laboratory tests and achieve a contrast of 10-6 at an angular distance of 3A/D, which can be implemented for imaging young giant exoplanets in combination with extreme adaptive optics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403704)the National Natural Science Foundation of China(Grant Nos.11304113,11474127,and 11574112)the Fundamental Research Funds for the Central Universities of China
文摘Columbite Zn0.8Co0.2Nb2O6 crystals were grown by optical floating zone methods. The x-ray diffraction(XRD) was used to check the structure information of the grown Zn0.8Co0.2Nb2O6 crystal. The room temperature and temperature-dependent Raman spectra were tested to investigate the optical phonon behaviors of columbite Zn0.8Co0.2Nb2O6, which exhibited a temperature stable property. The magnetics properties of Zn0.8Co0.2Nb2O6, measured by a physical property measurement system(PPMS), were also presented in this work.
基金The National Key Research and Development Program of China under contract Nos 2018YFC1407200 and 2018YFC1407203the National Natural Science Foundation of China under contract No.41976212
文摘Sea ice velocity impacts the distribution of sea ice,and the flux of exported sea ice through the Fram Strait increases with increasing ice velocity.Therefore,improving the accuracy of estimates of the sea ice velocity is important.We introduce a pyramid algorithm into the Horn-Schunck optical flow(HS-OF)method(to develop the PHS-OF method).Before calculating the sea ice velocity,we generate multilayer pyramid images from an original brightness temperature image.Then,the sea ice velocity of the pyramid layer is calculated,and the ice velocity in the original image is calculated by layer iteration.Winter Arctic sea ice velocities from 2014 to 2016 are obtained and used to discuss the accuracy of the HS-OF method and PHS-OF(specifically the 2-layer PHS-OF(2 LPHS-OF)and 4-layer PHS-OF(4 LPHS-OF))methods.The results prove that the PHS-OF method indeed improves the accuracy of sea ice velocity estimates,and the 2 LPHS-OF scheme is more appropriate for estimating ice velocity.The error is smaller for the 2 LPHS-OF velocity estimates than values from the Ocean and Sea Ice Satellite Application Facility and the Copernicus Marine Environment Monitoring Service,and estimates of changes in velocity by the 2 LPHS-OF method are consistent with those from the National Snow and Ice Data Center.Sea ice undergoes two main motion patterns,i.e.,transpolar drift and the Beaufort Gyre.In addition,cyclonic and anticyclonic ice drift occurred during winter 2016.Variations in sea ice velocity are related to the open water area,sea ice retreat time and length of the open water season.
文摘The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102
文摘To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.
基金the Natural SciencesEngineering Research Council of Canadathe NATO Scientific Affairs Division
文摘Light beam deflections caused by stress or strain gradients are inves- tigated analytically and experimentally in homogeneous beam specimens which are subjected to a particular case of flexure with shear. This study is a generalization of the prior an alytical-experimental examination of strain-gradient light deflections produced in stressed plates, which had concentrated on the simplest case where in- formation of interest is collected along a line of symmetry of the stress field. Main purpose of the present investigation is to document the efficacy of the strain-gradient method in analysis of the general case of stress state. The most interesting stress state is that in a beam subjected to the Saint-Venant bending, where the transversal and the longitudinal axes of the beam are in pure shear. The obtained results are compared with the predictions of the developed analytical models and with the pre- dictions of Filon's stress function. The procedures of evaluating the photoelastic and material coefficients using strain-gradient techniques were tested positively.
文摘The source of energy for life is the tissue mitochondria and they demand a complex chain of biochemicals to ensure proper physiological function.Classically,the blood levels,and not the tissue levels of these metabolites,are determined by expensive and time-consuming biochemical analyses.Since the tissue mitochondria are the consumers of the substrates of glycolysis and of fatty acid metabolism,their redox state is a unique accessible monitor of tissue metabolism and its blockade due to toxins.