As the core components of fifth-generation(5G)communication technology,optical modules should be consistently miniaturized in size while improving their level of integration.This inevitably leads to a dramatic spike i...As the core components of fifth-generation(5G)communication technology,optical modules should be consistently miniaturized in size while improving their level of integration.This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space.To ensure a successful start-up and operation of 5G optical modules,active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging.In this work,p-type Bi_(0.5)Sb_(1.5)Te_(3)and n-type Bi_(2)Te_(2.7)Se_(0.3)bulk thermoelectric(TE)materials are used,and a micro thermoelectric thermostat(micro-TET)(device size,2×9.3×1.1mm^(3);leg size,0.4×0.4×0.5mm^(3);number of legs,44)is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface.As a result,the internal temperature of this kind of optical module is always maintained at 45.7°C and the optical power is up to 7.4 dBm.Furthermore,a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method,taking into account the number of legs(N),leg width(W),leg length(L),filling atmosphere,electric contact resistance(Rec),thermal contact resistance(Rtc),ambient temperature(Ta),and the heat generated by the laser source(QL).It facilitates the integrated fabrication of micro-TET,and shows the way to enhance packaging and performance under different operating conditions.According to the roadmap,the micro-TET(2×9.3×1mm^(3),W=0.3 mm,L=0.4 mm,N=68 legs)is fabricated and consumes only 0.89W in cooling mode(Q_(L)=0.7W,T_(a)=80℃)and 0.36Win heating mode(T_(a)=0℃)to maintain the laser temperature of 50℃.This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.展开更多
Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet th...Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites.Here,we propose a type of transition metal phosphate(NiHPO_(4)·3H_(2)O,NHP)by a facile and scalable electrodeposition method,which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications.Specifically,the NHP film with an ultra-high transmittance(approach to 100%)achieves a large optical modulation(90.8%at 500 nm),high coloration efficiency(75.4 cm^(2)C^(-1)at 500 nm),and a high specific capacity of 47.8 mAh g^(-1)at 0.4 A g^(-1).Furthermore,the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques.Ultimately,a large-area electrochromic smart window with 100 cm^(2)is constructed based on the NHP electrode,displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges.Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.展开更多
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fib...In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.展开更多
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integr...Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.展开更多
Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic eleme...Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.展开更多
Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to...Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.展开更多
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a...An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.展开更多
In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the...In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the whole electro-optical modulator is established by means of ANSYS.With the finite element method analysis,the performance of the novel modulator is predicted.The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz·cm,and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength.Moreover,the calculated electrical reflected power of coplanar waveguide electrode is below-20 dB in the frequency ranging from 45 MHz to 65 GHz.Therefore,the designed modulator has wide modulation bandwidth and perfect impedance match.展开更多
CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the...CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.展开更多
A high-speed silicon modulator with broad optical bandwidth is proposed based on a symmetrically configured Mach- Zehnder interferometer. Careful phase bias control and traveling-wave design are used to improve the hi...A high-speed silicon modulator with broad optical bandwidth is proposed based on a symmetrically configured Mach- Zehnder interferometer. Careful phase bias control and traveling-wave design are used to improve the high-speed perfor- mance. Over a broadband wavelength range, high-speed operation up to 30 Gbit/s with a 4.5 dB-5.5 dB extinction ratio is experimentally demonstrated with a low driving voltage of 3 V.展开更多
A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used....A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.展开更多
Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architec...Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.展开更多
Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the f...Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the fundamental linear and nonlin ear signal channel limitations of the Shannon theory when there is no compensation in an optical fiber transmission system?Next-generation technologies should exceed the 100G transmis sion capability of coherent systems in order to approach the Shannon limit.Spectral efficiency first needs to be improved be fore overall transmission capability can be improved.The means to improve spectral efficiency include more complex modulation formats and channel encoding/decoding algorithms,prefiltering with multisymbol detection,optical OFDM and Ny quist WDM multicarrier technologies,and nonlinearity compen sation.With further optimization,these technologies will most likely be incorporated into beyond-100G optical transport sys tems to meet bandwidth demand.展开更多
A novel scheme of optical modulation in 40 GHz radio-over fiber (RoF) system is proposed. It generates optical QPSK/16QAM signals in a serial-parallel structure of Mach-Zehnder modulators (MZMs). The millimeter-wa...A novel scheme of optical modulation in 40 GHz radio-over fiber (RoF) system is proposed. It generates optical QPSK/16QAM signals in a serial-parallel structure of Mach-Zehnder modulators (MZMs). The millimeter-wave is obtained with optical frequency multiplication (OFM). Furthermore, modulation on optical-wave is transferred onto millimeter-wave. It can be used to increase transmission capacity of millimeter-wave RoF systems.展开更多
We study rogue waves in an inhomogeneous nonlinear optical fiber with variable coefficients. An exact rogue wave solution that describes rogue wave excitation and modulation on a bright soliton pulse is obtained. Spec...We study rogue waves in an inhomogeneous nonlinear optical fiber with variable coefficients. An exact rogue wave solution that describes rogue wave excitation and modulation on a bright soliton pulse is obtained. Special properties of rogue waves on the bright soliton, such as the trajectory and spectrum, are analyzed in detail. In particular, our analytical results suggest a way of sustaining the peak shape of rogue waves on the soliton background by choosing an appropriate dispersion parameter.展开更多
A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency o...A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.展开更多
The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Proce...The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Processing algorithms to reduce various transmission limitations in coherent receiving systems.Polarization Division Multiplexed Quadrature Phase Shift Keying(PDM-QPSK)is deployed to reach high bit rates,provides modified digital clock recovery,and allows BER-Aided Constant Modulus Algorithm(BA-CMA)equalising.A Soft Decision-Forward Error Correction(SD-FEC)algorithm and a joint scheme with timing recovery and adaptive equaliser are used to achieve better performance.A compact coherent transceiver is also developed.These techniques have been applied in the largest 100 G Optical Transport Network(OTN)deployment in the world,the backbone expansion project for Phase 3 of the China Education and Research Network(CERNET),with a total transmission length of 10 000 km.展开更多
All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversi...All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc. Opti- cal switching/routing is in fact wavelength switching/ routing. OXC and wavelength conversion (WC) are introduced into cross nodes so that a virtual wavelength path is established. With WC, communication route is formed only if there is unused wavelength in an individual segment link. The rate wavelength usage is thus greatly increased. The blocking rate of network can be reduced by adding WCs, especially for huge capacity multiple nodes ones. Therefore, WC has attracted much attention in basic research of optical communication and is used in some experimental networks.This dissertation studies all optic wavelength conversion and its application, with the contributions in the following five aspects.展开更多
Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property ch...Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property change is a tough problem.Here,we demonstrate a remarkable transformation of optical transmittance in few-layer graphene(FLG)covering the electromagnetic spectra from the visible to the terahertz wave after lithium(Li)intercalation.It results in the transmittance being higher than 90%from the wavelengths of 480 to 1040 nm,and it increases most from 86.4%to 94.1%at 600 nm,reduces from∼80%to∼68%in the wavelength range from 2.5 to 11μm,has∼20%reduction over a wavelength range from 0.4 to 1.2 THz,and reduces from 97.2%to 68.2%at the wavelength of 1.2 THz.The optical modification of lithiated FLG is attributed to the increase of Fermi energy(Ef)due to the charge transfer from Li to graphene layers.Our results may provide a new strategy for the design of broadband optical modulation devices.展开更多
基金National Key Research and Development Program of China,Grant/Award Number:2019YFA0704900National Natural Science Foundation of China,Grant/Award Number:52202289。
文摘As the core components of fifth-generation(5G)communication technology,optical modules should be consistently miniaturized in size while improving their level of integration.This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space.To ensure a successful start-up and operation of 5G optical modules,active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging.In this work,p-type Bi_(0.5)Sb_(1.5)Te_(3)and n-type Bi_(2)Te_(2.7)Se_(0.3)bulk thermoelectric(TE)materials are used,and a micro thermoelectric thermostat(micro-TET)(device size,2×9.3×1.1mm^(3);leg size,0.4×0.4×0.5mm^(3);number of legs,44)is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface.As a result,the internal temperature of this kind of optical module is always maintained at 45.7°C and the optical power is up to 7.4 dBm.Furthermore,a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method,taking into account the number of legs(N),leg width(W),leg length(L),filling atmosphere,electric contact resistance(Rec),thermal contact resistance(Rtc),ambient temperature(Ta),and the heat generated by the laser source(QL).It facilitates the integrated fabrication of micro-TET,and shows the way to enhance packaging and performance under different operating conditions.According to the roadmap,the micro-TET(2×9.3×1mm^(3),W=0.3 mm,L=0.4 mm,N=68 legs)is fabricated and consumes only 0.89W in cooling mode(Q_(L)=0.7W,T_(a)=80℃)and 0.36Win heating mode(T_(a)=0℃)to maintain the laser temperature of 50℃.This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.
基金financially the National Natural Science Foundation of China(U2004175,51902086 and 62222402)China Postdoctoral Science Foundation(2022M711036)the Key Scientific Research Project plan of the University in Henan Province(22A430002)。
文摘Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites.Here,we propose a type of transition metal phosphate(NiHPO_(4)·3H_(2)O,NHP)by a facile and scalable electrodeposition method,which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications.Specifically,the NHP film with an ultra-high transmittance(approach to 100%)achieves a large optical modulation(90.8%at 500 nm),high coloration efficiency(75.4 cm^(2)C^(-1)at 500 nm),and a high specific capacity of 47.8 mAh g^(-1)at 0.4 A g^(-1).Furthermore,the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques.Ultimately,a large-area electrochromic smart window with 100 cm^(2)is constructed based on the NHP electrode,displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges.Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金This work was supported by National Key Research and Development Program of China(2018YFB2201101)the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB43000000Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z201100004020004。
文摘In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.
基金funding support from the National Major Research and Development Program(2019YFB2203603)the National Science Fund for Distinguished Young Scholars(61725503)+2 种基金the National Natural Science Foundation of China(NSFC)(62275273,11804387,and 91950205)the China Postdoctoral Science Foundation(2020M681847)the Zhejiang Provincial Natural Science Foundation(LZ18F050001).
文摘Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.
基金financial support from the National Natural Science Foundation of China(Nos.61874141,11904239)Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40709,2021JJ20080,2022JJ20080)+2 种基金Postgraduate Innovative Project of Central South University(Grant No.2021zzts0056)Open Sharing Found for the Large-scale Instruments and Equipment of Central South Universitysupported in part by the High Performance Computing Center of Central South University。
文摘Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.
基金financial support from the National Natural Science Foundation of China(22105106)the Natural Science Foundation of Jiangsu Province of China(BK20210603)+1 种基金the Nanjing Science and Technology Innovation Project for overseas Students(NJKCZYZZ2022–05)the Start-up Funding from NUPTSF(NY221003)。
文摘Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.
基金Project supported by the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16100)the National Natural Science Foundation of China(Grant No.61107035)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ03091502)the National Basic Research Program of China(Grant Nos.2010CB327802 and 2010CB327806)
文摘An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.
基金Supported by National Natural Science Foundation of China (No.60577023)Key Laboratory of Opto-Electronics Information and Technical Science of Ministry of Education,China
文摘In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the whole electro-optical modulator is established by means of ANSYS.With the finite element method analysis,the performance of the novel modulator is predicted.The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz·cm,and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength.Moreover,the calculated electrical reflected power of coplanar waveguide electrode is below-20 dB in the frequency ranging from 45 MHz to 65 GHz.Therefore,the designed modulator has wide modulation bandwidth and perfect impedance match.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51775147 and 51705105)the Science Challenge Project of China(Grant No.TZ2016006-0503-01)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)the China Postdoctoral Science Foundation funded project(Grant Nos.2018T110288 and 2017M621260)the Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant Nos.SKLRS201718A and SKLRS201803B).
文摘CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2012AA012202)the National Basic Research Program of China(Grant No.2011CB301701)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KGCX2-EW-102)the National Natural Science Foundation of China(Grant Nos.61107048 and 61275065)
文摘A high-speed silicon modulator with broad optical bandwidth is proposed based on a symmetrically configured Mach- Zehnder interferometer. Careful phase bias control and traveling-wave design are used to improve the high-speed perfor- mance. Over a broadband wavelength range, high-speed operation up to 30 Gbit/s with a 4.5 dB-5.5 dB extinction ratio is experimentally demonstrated with a low driving voltage of 3 V.
文摘A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51573006,51573003,51203003,51303008,51302006,51402006,51272026,and 51273022)the Major Project of Beijing Science and Technology Program,China(Grant Nos.Z151100003315023 and Z141100003814011)the Fok Ying Tung Education Foundation,China(Grant No.142009)
文摘Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.
基金supported by National High-Tech Research and Development Program of China under Grant No.2013AA010501
文摘Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the fundamental linear and nonlin ear signal channel limitations of the Shannon theory when there is no compensation in an optical fiber transmission system?Next-generation technologies should exceed the 100G transmis sion capability of coherent systems in order to approach the Shannon limit.Spectral efficiency first needs to be improved be fore overall transmission capability can be improved.The means to improve spectral efficiency include more complex modulation formats and channel encoding/decoding algorithms,prefiltering with multisymbol detection,optical OFDM and Ny quist WDM multicarrier technologies,and nonlinearity compen sation.With further optimization,these technologies will most likely be incorporated into beyond-100G optical transport sys tems to meet bandwidth demand.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology of Commission of Shanghai Municipality (Grant Nos.08DZ150010F, 10511500602)the National Natural Science Foundation of China (Grant No.60877053)
文摘A novel scheme of optical modulation in 40 GHz radio-over fiber (RoF) system is proposed. It generates optical QPSK/16QAM signals in a serial-parallel structure of Mach-Zehnder modulators (MZMs). The millimeter-wave is obtained with optical frequency multiplication (OFM). Furthermore, modulation on optical-wave is transferred onto millimeter-wave. It can be used to increase transmission capacity of millimeter-wave RoF systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11475135 and 11547302the Doctoral Program Funds of the Ministry of Education of China under Grant No 20126101110004
文摘We study rogue waves in an inhomogeneous nonlinear optical fiber with variable coefficients. An exact rogue wave solution that describes rogue wave excitation and modulation on a bright soliton pulse is obtained. Special properties of rogue waves on the bright soliton, such as the trajectory and spectrum, are analyzed in detail. In particular, our analytical results suggest a way of sustaining the peak shape of rogue waves on the soliton background by choosing an appropriate dispersion parameter.
基金Supported by the National Natural Science Foundation of China under Grant No 61675196the National Basic Research Program of China under Grant No 2014CB340102+1 种基金the National High-Tech Research and Development Program of China under Grant No 2015AA016903the Open Research of Beijing University of Posts and Telecommunications under Grant No IOOC2013A002
文摘A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.
基金supported by the National Natural Science Foundation of China under Grant No. 60932004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA011301,No. 2012AA011303
文摘The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Processing algorithms to reduce various transmission limitations in coherent receiving systems.Polarization Division Multiplexed Quadrature Phase Shift Keying(PDM-QPSK)is deployed to reach high bit rates,provides modified digital clock recovery,and allows BER-Aided Constant Modulus Algorithm(BA-CMA)equalising.A Soft Decision-Forward Error Correction(SD-FEC)algorithm and a joint scheme with timing recovery and adaptive equaliser are used to achieve better performance.A compact coherent transceiver is also developed.These techniques have been applied in the largest 100 G Optical Transport Network(OTN)deployment in the world,the backbone expansion project for Phase 3 of the China Education and Research Network(CERNET),with a total transmission length of 10 000 km.
文摘All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc. Opti- cal switching/routing is in fact wavelength switching/ routing. OXC and wavelength conversion (WC) are introduced into cross nodes so that a virtual wavelength path is established. With WC, communication route is formed only if there is unused wavelength in an individual segment link. The rate wavelength usage is thus greatly increased. The blocking rate of network can be reduced by adding WCs, especially for huge capacity multiple nodes ones. Therefore, WC has attracted much attention in basic research of optical communication and is used in some experimental networks.This dissertation studies all optic wavelength conversion and its application, with the contributions in the following five aspects.
基金supported by the National Key R&D Program of China(No.2022YFA1404201)the National Natural Science Foundation of China(Nos.62305200,U22A2091,62127817,and 62075240)the Fundamental Research Program of Shanxi Province(No.202203021222001).
文摘Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property change is a tough problem.Here,we demonstrate a remarkable transformation of optical transmittance in few-layer graphene(FLG)covering the electromagnetic spectra from the visible to the terahertz wave after lithium(Li)intercalation.It results in the transmittance being higher than 90%from the wavelengths of 480 to 1040 nm,and it increases most from 86.4%to 94.1%at 600 nm,reduces from∼80%to∼68%in the wavelength range from 2.5 to 11μm,has∼20%reduction over a wavelength range from 0.4 to 1.2 THz,and reduces from 97.2%to 68.2%at the wavelength of 1.2 THz.The optical modification of lithiated FLG is attributed to the increase of Fermi energy(Ef)due to the charge transfer from Li to graphene layers.Our results may provide a new strategy for the design of broadband optical modulation devices.