Large-scale dense wavelength division multiplexing(DWDM)multi-channel performance monitoring is one of the indispensable technologies for the flexible optical networks.The existing Labelbased monitoring scheme require...Large-scale dense wavelength division multiplexing(DWDM)multi-channel performance monitoring is one of the indispensable technologies for the flexible optical networks.The existing Labelbased monitoring scheme requires expensive optical demultiplexing components/equipment to avoid the influence of stimulated Raman scattering(SRS),which is not only costly and bulky,but also could not monitor the wavelength channels simultaneously.In this paper,a low-cost,high-accuracy monitoring scheme based on Optical Label Method is proposed for DWDM networks,where the optical channel power and node identification(ID),as the main monitoring targets that both can indicate or evaluate the channel connection status,could be efficiently monitored.In the scheme,a novel digital signal processing(DSP)method of SRS mitigation is proposed and demonstrated,and an asynchronous code-division multiple access(A-CDMA)based digital label encoding and decoding method is adopted to distinguish the node ID so that channel initial added node can be accurately verified,thereby wavelength connection status can be reliably monitored by combining the channel power and node ID information.The simulation results show that each wavelength channel power and node ID can be accurately monitored only by low bandwidth photoelectric detector(PD)under the condition of 80 wavelengths and 10 spans at C-band.展开更多
A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationsh...A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.展开更多
A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay ...A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay tap sampled to obtain two-dimensional histogram, known as delay tap plots. Secondly, the features of delay tap plots are extracted to train the feed forward, three-layer preceptor structure artificial neural networks. Finally, the outputs of trained neural network are used to monitor optical duobinary signal impairments. Simulation of optical signal noise ratio ( OSNR), chromatic dispersion (CD), and differential group delay (DGD) monitoring in 40 Gbit/s optical duo- binary system is presented. The proposed monitoring scheme can accurately identify simultaneous impairments without requiring synchronous sampling or data clock recovery. The proposed technique is simple, cost-effective and suitable for in-service distributed OPM.展开更多
The achievement of the targets of coordinated control of PM2.5 and O3 and the carbon peaking and carbon neutrality depend on the development of pollution and greenhouse gas monitoring technologies.Optical monitoring t...The achievement of the targets of coordinated control of PM2.5 and O3 and the carbon peaking and carbon neutrality depend on the development of pollution and greenhouse gas monitoring technologies.Optical monitoring technology,based on its technical characteristics of high scalability,high sensitivity and wide-targets detection,has obvious advantages in pollution/greenhouse gases monitoring and has become an important direction in the development of environmental monitoring technology.At present,a system of environmental optical monitoring technology with differential optical absorption spectroscopy(DOAS),cavity ring-down spectroscopy(CRDS),light detection and ranging(LIDAR),laser heterodyne spectroscopy(LHS),tunable diode laser absorption spectroscopy(TDLAS),fourier transform infrared spectroscopy(FTIR)and fluorescence assay by gas expansion(FAGE)as the main body has been established.However,with the promotion of“reduction of pollution and carbon emissions”strategy,there have been significant changes in the sources of pollution/greenhouse gases,emission components and emission concentrations,which have put forward new and higher requirements for the development of monitoring technologies.In the future,we should pay more attention to the development of new optical monitoring techniques and the construction of stereoscopic monitoring system,the interdisciplinarity(among mathematics,physics,chemistry and biology,etc.),and the monitoring of greenhouse gases and research on atmospheric chemistry.展开更多
For joint modulation format identification(MFI)and optical signal-to-noise ratio(OSNR)monitoring,a simple and intelligent optical communication performance monitoring method is proposed,and the feasibility is demonstr...For joint modulation format identification(MFI)and optical signal-to-noise ratio(OSNR)monitoring,a simple and intelligent optical communication performance monitoring method is proposed,and the feasibility is demonstrated by digital coherent optical communication experiments.The experiment results show that for all modulation formats,including 28 GBaud polarization division multiplexing(PDM)QPSK/8-QAM/16-QAM/64-QAM,100%MFI accuracies are achieved even at OSNR values lower than the corresponding theoretical 20%forward error correction limit,as well as the high accuracies for OSNR monitoring.Furthermore,the proposed scheme has a reasonable monitoring level when chromatic dispersion and fiber nonlinear effects are varied.展开更多
High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case...High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.展开更多
Low-cost,flexible and intelligent optical performance monitoring and management is a key enabling technology for network quality guarantee,especially in the era of explosive growth of communication capacity and networ...Low-cost,flexible and intelligent optical performance monitoring and management is a key enabling technology for network quality guarantee,especially in the era of explosive growth of communication capacity and network scale.However,to the best of our knowledge,it is extremely challenging to implement real-time performance monitoring and operations,administration and maintenance(OAM) in a highly complex dynamic network.In this paper,we propose an innovative optical identification(OID) scheme that can realize both performance monitoring and some advanced OAM sub-functions.The basic concepts,applications,challenges and evolution directions of this OID tool are also discussed.展开更多
A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direc...A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements.Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format,probabilistic shaping,roll-off factor,baud rate,optical signal-to-noise ratio,and chromatic dispersion.The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios.Furthermore,the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network.Compared with the designed VGG-based CNN,the MobileNet-based MTL does not need to train all the classes,and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy,indicating great potential in various monitoring scenarios.展开更多
GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point...GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.展开更多
Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to c...Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide.展开更多
Recent progress on optical fiber monitoring in the optical communication systems is reviewed along with current optical fiber monitoring and diagnosing problems in deployed access, trunk and submarine communication sy...Recent progress on optical fiber monitoring in the optical communication systems is reviewed along with current optical fiber monitoring and diagnosing problems in deployed access, trunk and submarine communication systems.展开更多
An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semicon- ...An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semicon- ductor optical amplifier (SOA). The optical power of the output spectral components, which is from the probe's frequency up to the signal bandwidth, is used for CD monitoring. This technique provides a wide monitoring range with large variation scale. The impacts of the polarization mode dispersion (PMD) and the optical signal-to-noise ratio (OSNR) on the CD monitoring results are theoretically analyzed and then experimentally investigated, showing that they have slight influence on the monitoring results within a certain range. Furthermore, simulated results for quadrature phase shift keying (QPSK) signal at 80 Gbit/s are also demonstrated, indicating that this technique is suitable for advanced modulated format as well.展开更多
We propose a technique for chromatic dispersion monitoring based on optical time domain level monitoring. Experimental and simulation results show that the technique is effective for the monitoring of dispersion in 42...We propose a technique for chromatic dispersion monitoring based on optical time domain level monitoring. Experimental and simulation results show that the technique is effective for the monitoring of dispersion in 42.7-Gbps CS-RZ signals for dynamic dispersion compensation.展开更多
The authors would like to apologize for some mistakes in the letter on Chinese Optics Letters vol. 12, no. 11, page 111701 and wish to make the corrections described below:
An in-band optical signal-to-noise ratio (OSNR) monitoring technique with high resolution and large measurement range is demonstrated based on low- bandwidth coherent receiver and a tunable laser. The measurement ra...An in-band optical signal-to-noise ratio (OSNR) monitoring technique with high resolution and large measurement range is demonstrated based on low- bandwidth coherent receiver and a tunable laser. The measurement range of OSNR is from 10 to 25 dB and the resolution can be controlled about ±1 dB.展开更多
On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits(PICs).Traditional on-chip optical monitoring is implemented by t...On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits(PICs).Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide,which leads to signifcant loss.Due to its advantages like non-invasive nature,miniaturization,and complementary metal-oxide-semiconductor(CMOS)process compatibility,a transparent monitor named the contactless integrated photonic probe(CLIPP),has been attracting great attention in recent years.The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption(SSA)efect.In this review,we frst introduce the fundamentals of the CLIPP including the concept,the equivalent electric model and the impedance read-out method,and then summarize some characteristics of the CLIPP.Finally,the functional applications of the CLIPP on the identifcation and feedback control of optical signal are discussed,followed by a brief outlook on the prospects of the CLIPP.展开更多
基金supported by the National Natural Science Foundation of China(No.62001045)Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT17)。
文摘Large-scale dense wavelength division multiplexing(DWDM)multi-channel performance monitoring is one of the indispensable technologies for the flexible optical networks.The existing Labelbased monitoring scheme requires expensive optical demultiplexing components/equipment to avoid the influence of stimulated Raman scattering(SRS),which is not only costly and bulky,but also could not monitor the wavelength channels simultaneously.In this paper,a low-cost,high-accuracy monitoring scheme based on Optical Label Method is proposed for DWDM networks,where the optical channel power and node identification(ID),as the main monitoring targets that both can indicate or evaluate the channel connection status,could be efficiently monitored.In the scheme,a novel digital signal processing(DSP)method of SRS mitigation is proposed and demonstrated,and an asynchronous code-division multiple access(A-CDMA)based digital label encoding and decoding method is adopted to distinguish the node ID so that channel initial added node can be accurately verified,thereby wavelength connection status can be reliably monitored by combining the channel power and node ID information.The simulation results show that each wavelength channel power and node ID can be accurately monitored only by low bandwidth photoelectric detector(PD)under the condition of 80 wavelengths and 10 spans at C-band.
基金the National Key Research and Development Program of China(Grant No.2018YFB1801003)the National Natural Science Foundation of China(Grant Nos.61525501 and 61827817)the Beijing Natural Science Foundation,China(Grant No.4192022).
文摘A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.
基金Supported by the National Natural Science Foundation of China (60978007 61027007 61177067)
文摘A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay tap sampled to obtain two-dimensional histogram, known as delay tap plots. Secondly, the features of delay tap plots are extracted to train the feed forward, three-layer preceptor structure artificial neural networks. Finally, the outputs of trained neural network are used to monitor optical duobinary signal impairments. Simulation of optical signal noise ratio ( OSNR), chromatic dispersion (CD), and differential group delay (DGD) monitoring in 40 Gbit/s optical duo- binary system is presented. The proposed monitoring scheme can accurately identify simultaneous impairments without requiring synchronous sampling or data clock recovery. The proposed technique is simple, cost-effective and suitable for in-service distributed OPM.
基金the Strategic Research and Consulting Project of Chinese Academy of Engineering(Nos.2023-XBZD-18,2023-JB-05,and 2023-XZ-37).
文摘The achievement of the targets of coordinated control of PM2.5 and O3 and the carbon peaking and carbon neutrality depend on the development of pollution and greenhouse gas monitoring technologies.Optical monitoring technology,based on its technical characteristics of high scalability,high sensitivity and wide-targets detection,has obvious advantages in pollution/greenhouse gases monitoring and has become an important direction in the development of environmental monitoring technology.At present,a system of environmental optical monitoring technology with differential optical absorption spectroscopy(DOAS),cavity ring-down spectroscopy(CRDS),light detection and ranging(LIDAR),laser heterodyne spectroscopy(LHS),tunable diode laser absorption spectroscopy(TDLAS),fourier transform infrared spectroscopy(FTIR)and fluorescence assay by gas expansion(FAGE)as the main body has been established.However,with the promotion of“reduction of pollution and carbon emissions”strategy,there have been significant changes in the sources of pollution/greenhouse gases,emission components and emission concentrations,which have put forward new and higher requirements for the development of monitoring technologies.In the future,we should pay more attention to the development of new optical monitoring techniques and the construction of stereoscopic monitoring system,the interdisciplinarity(among mathematics,physics,chemistry and biology,etc.),and the monitoring of greenhouse gases and research on atmospheric chemistry.
基金This work was supported by the National Key Research and Development Program of China(No.2021YFB2206303)Key Research and Development Plan of Shandong Province(No.2023CXPT100)+1 种基金Sichuan Science Fund for Distinguished Young Scholars(No.2023NSFSC1969)National Student Research Training Program of China(No.20230613037).
文摘For joint modulation format identification(MFI)and optical signal-to-noise ratio(OSNR)monitoring,a simple and intelligent optical communication performance monitoring method is proposed,and the feasibility is demonstrated by digital coherent optical communication experiments.The experiment results show that for all modulation formats,including 28 GBaud polarization division multiplexing(PDM)QPSK/8-QAM/16-QAM/64-QAM,100%MFI accuracies are achieved even at OSNR values lower than the corresponding theoretical 20%forward error correction limit,as well as the high accuracies for OSNR monitoring.Furthermore,the proposed scheme has a reasonable monitoring level when chromatic dispersion and fiber nonlinear effects are varied.
基金the Austrian Academy of Sciences(OeAW)for funding the landslide monitoring project for several yearsthe Austrian Federal Railways(OBB)for the funding of the geogrid monitoring project,especially the participating departments of OBB-Infrastruktur AG:Tunneling,Surveying and Data Management,Research and Development
文摘High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.
基金supported in part by the National Key R&D Program of China under Grant No.2019YFB2205302。
文摘Low-cost,flexible and intelligent optical performance monitoring and management is a key enabling technology for network quality guarantee,especially in the era of explosive growth of communication capacity and network scale.However,to the best of our knowledge,it is extremely challenging to implement real-time performance monitoring and operations,administration and maintenance(OAM) in a highly complex dynamic network.In this paper,we propose an innovative optical identification(OID) scheme that can realize both performance monitoring and some advanced OAM sub-functions.The basic concepts,applications,challenges and evolution directions of this OID tool are also discussed.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFB1803700)the Key Technologies Research and Development Program of Tianjin (Grant No.20YFZCGX00440).
文摘A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements.Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format,probabilistic shaping,roll-off factor,baud rate,optical signal-to-noise ratio,and chromatic dispersion.The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios.Furthermore,the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network.Compared with the designed VGG-based CNN,the MobileNet-based MTL does not need to train all the classes,and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy,indicating great potential in various monitoring scenarios.
文摘GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.
基金partially supported by the project Safe Land "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies" under Grant No. 226479 (7th Framework Programme)
文摘Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide.
文摘Recent progress on optical fiber monitoring in the optical communication systems is reviewed along with current optical fiber monitoring and diagnosing problems in deployed access, trunk and submarine communication systems.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2011CB301704), the National Science Fund for Distinguished Young Scholars (No. 61125501) and the National Natural Science Foundation of China (NSFC) (Grant No. 61007042).
文摘An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semicon- ductor optical amplifier (SOA). The optical power of the output spectral components, which is from the probe's frequency up to the signal bandwidth, is used for CD monitoring. This technique provides a wide monitoring range with large variation scale. The impacts of the polarization mode dispersion (PMD) and the optical signal-to-noise ratio (OSNR) on the CD monitoring results are theoretically analyzed and then experimentally investigated, showing that they have slight influence on the monitoring results within a certain range. Furthermore, simulated results for quadrature phase shift keying (QPSK) signal at 80 Gbit/s are also demonstrated, indicating that this technique is suitable for advanced modulated format as well.
文摘We propose a technique for chromatic dispersion monitoring based on optical time domain level monitoring. Experimental and simulation results show that the technique is effective for the monitoring of dispersion in 42.7-Gbps CS-RZ signals for dynamic dispersion compensation.
文摘The authors would like to apologize for some mistakes in the letter on Chinese Optics Letters vol. 12, no. 11, page 111701 and wish to make the corrections described below:
基金Acknowledgements The authors would like to acknowledge the support of the National Natural Science Foundation of China (NSFC) (Grant No. 61435006) and the Program for New Century Excellent Talents in University (NCET-12-0679) in China.
文摘An in-band optical signal-to-noise ratio (OSNR) monitoring technique with high resolution and large measurement range is demonstrated based on low- bandwidth coherent receiver and a tunable laser. The measurement range of OSNR is from 10 to 25 dB and the resolution can be controlled about ±1 dB.
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028).
文摘On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits(PICs).Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide,which leads to signifcant loss.Due to its advantages like non-invasive nature,miniaturization,and complementary metal-oxide-semiconductor(CMOS)process compatibility,a transparent monitor named the contactless integrated photonic probe(CLIPP),has been attracting great attention in recent years.The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption(SSA)efect.In this review,we frst introduce the fundamentals of the CLIPP including the concept,the equivalent electric model and the impedance read-out method,and then summarize some characteristics of the CLIPP.Finally,the functional applications of the CLIPP on the identifcation and feedback control of optical signal are discussed,followed by a brief outlook on the prospects of the CLIPP.