Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to t...Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.展开更多
Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising met...Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.展开更多
基金supported by Science and Technology Innovation Seedling Project of Sichuan Province,China(Grant No.2018100)Major Project of CDNU(Grant No.CS18ZDZ0511).
文摘Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378030 and 11127901)the National Basic Research Program of China(Grant No.2011CB808101)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.