A vectorial optical field generator(VOF-Gen) based on two reflective phase-only liquid crystal spatial light modulators enables the creation of an arbitrary optical complex field. In this work, the capabilities of the...A vectorial optical field generator(VOF-Gen) based on two reflective phase-only liquid crystal spatial light modulators enables the creation of an arbitrary optical complex field. In this work, the capabilities of the VOF-Gen in terms of manipulating the spatial distributions of phase, amplitude, and polarization are experimentally demonstrated by generating a radially polarized optical field consisted of five annular rings, the focusing properties of which are also numerically studied with vectorial diffraction theory. By carefully adjusting the relative amplitude and phase between the adjacent rings, an optical needle field with purely longitudinal polarization can be produced in the focal region of a high numerical aperture lens. The versatile method presented in this work can be easily extended to the generation of a vectorial optical field with any desired complex distributions.展开更多
New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the ligh...New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.展开更多
文摘A vectorial optical field generator(VOF-Gen) based on two reflective phase-only liquid crystal spatial light modulators enables the creation of an arbitrary optical complex field. In this work, the capabilities of the VOF-Gen in terms of manipulating the spatial distributions of phase, amplitude, and polarization are experimentally demonstrated by generating a radially polarized optical field consisted of five annular rings, the focusing properties of which are also numerically studied with vectorial diffraction theory. By carefully adjusting the relative amplitude and phase between the adjacent rings, an optical needle field with purely longitudinal polarization can be produced in the focal region of a high numerical aperture lens. The versatile method presented in this work can be easily extended to the generation of a vectorial optical field with any desired complex distributions.
文摘New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.