The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-b...The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.展开更多
The Dirac optical potential for p-14Be elastic scattering is evaluated by the relativistic impulse approximation. Each of the real part and the imaginary part of the potential shows a pronounced "long tail" ...The Dirac optical potential for p-14Be elastic scattering is evaluated by the relativistic impulse approximation. Each of the real part and the imaginary part of the potential shows a pronounced "long tail" for the proton elastic scattering from halo nucleus 14Be compared with the potentials for proton scattering from its adjacent nuclei 12C and 16O, which do not have halo structures. This kind of "long tail" phenomenon suggests another signature for halo nuclei.展开更多
A common optical potential for 4He+12C at intermediate bombarding energies, which is essential in analyzing exotic nuclei with 4He clusters, is obtained based on the Sao Paulo potential. Among systematic optical pote...A common optical potential for 4He+12C at intermediate bombarding energies, which is essential in analyzing exotic nuclei with 4He clusters, is obtained based on the Sao Paulo potential. Among systematic optical potentials for 4He+12 C, this potential has the merit of using a fixed imaginary part of the Woods Saxon form. By optical- model calculations, this potential reproduces the experimental elastic scattering angular distributions of a He+12 C well within the energy range of 26A 60A MeV. It is also applied successfully in calculations of the breakup reactions of 6Li+12 C and 6He+12 C with a three-body continuum discretized coupled-channel method.展开更多
The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential mode...The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.展开更多
The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and f...The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and farside scattering components.By contrast,the envelope method can decompose the experimental data into two components with negative and positive deflection angles,respectively.Hence,a question arises as to whether the comparison between the calculated nearside(or farside)component and the derived positive-deflection-angle(or negative-deflection-angle)component can help analyze the potential ambiguity problem.In this study,we conducted a trial application of the envelope method to the potential ambiguity problem.The envelope method was improved by including uncertainties in the experimental data.The colliding systems of 16O+28Si at 215.2 MeV and 12C+12C at 1016 MeV were considered in the analyses.For each colliding system,the angular distribution experimental data were described nearly equally well by two potential sets,one of which is“surface transpar-ent”and the other is refractive.The calculated angular distributions were decomposed into nearside and farside scattering components.Using the improved envelope method,the experimental data were decomposed into the positive-deflection-angle and negative-deflection-angle components,which were then compared with the calculated nearside and farside components.The capability of the envelope method to analyze the potential ambiguities was also discussed.展开更多
The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^...The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^(30)Si(^(3)He,d)^(31)P,^(13)B(d,^(3)He)^(12)Be,and^(34)S(^(3)He,d)^(35)Cl reactions at incident energies of 25,46,and 25 MeV,respectively,within the framework of the distorted wave Born approximation.The differential cross sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%,owing to the uncertainties in the optical model potentials from 20,000 calculations of randomly sampled parameters.This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies.Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross sections at different scattering angles are also discussed.展开更多
For 112 target nuclei (52 elements) with proton as projectile, we calculate the reaction cross sections and elastic scattering angular distributions, as well as the X^2 values for 16 kinds of proton optical model po...For 112 target nuclei (52 elements) with proton as projectile, we calculate the reaction cross sections and elastic scattering angular distributions, as well as the X^2 values for 16 kinds of proton optical model potentials: two sets of phenomenological global optical potentials and the microscopic optical potentials proposed by Shen et al for 14 sets of Skyrme force parameters: GSI-6, SBJS, SKM, SGI-Ⅱ, SKa-b, SCOI-Ⅱ. We find that for obtaining the proton microscopic optical potential based on the nuclear matter approach with Skyrme force, SGI, SKa and SKb are the three sets of optimal Skyrme force parameters.展开更多
We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity la...We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.展开更多
Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and...Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.展开更多
This paper investigates the dynamics of dark solitons in a Bose-Einstein condensate with a magnetic trap and an optical lattice (OL) trap, and analyses the effects of the periodic OL potential on the dynamics by app...This paper investigates the dynamics of dark solitons in a Bose-Einstein condensate with a magnetic trap and an optical lattice (OL) trap, and analyses the effects of the periodic OL potential on the dynamics by applying the variational approach based on the renormalized integrals of motion. The results show that the dark soliton becomes only a standing-wave and free propagation of the dark soliton is not possible when the periodic length of the OL potential is approximately equal to the effective width of the dark soliton. When the periodic length is very small or very large, the effects of the OL potential on the dark soliton will be sharply reduced. Finally, the numerical results confirm these theoretical findings.展开更多
We study the nonlinear dynamics of two-component Bose-Einstein condensates in one-dimensional pe-riodic optical lattice potentials.The stationary state perturbation solutions of the coupled two-component nonlinearSchr...We study the nonlinear dynamics of two-component Bose-Einstein condensates in one-dimensional pe-riodic optical lattice potentials.The stationary state perturbation solutions of the coupled two-component nonlinearSchr?dinger/Gross-Pitaevskii equations are constructed by using the direct perturbation method.Theoretical analysisrevels that the perturbation solution is the chaotic one,which indicates the existence of chaos and chaotic region inparameter space.The corresponding numerical calculation results agree well with the analytical results.By applying thechaotic perturbation solution,we demonstrate the atomic spatial population and the energy distribution of the systemare chaotic generally.展开更多
A set of new global phenomenological optical model potential parameters has been obtained in the mass range of target nuclei 220≤A≤260 with incident energies below 300 MeV, by simultaneously fitting the experimental...A set of new global phenomenological optical model potential parameters has been obtained in the mass range of target nuclei 220≤A≤260 with incident energies below 300 MeV, by simultaneously fitting the experimental data of 232Th and 23Su, and these potential parameters are analyzed and used to calculate the reaction cross sections, energy spectra and double differ- ential cross sections for p+232Th reaction. Comparison of calculated results using these potential parameters with available experimental data shows that the present form of global optical model potential could reproduce experimental data for both the neutron and the proton.展开更多
We achieved a set of 9Be global phenomenological optical model potentials by fitting a large experimental dataset of the elastic scattering observable for target mass numbers from 24 to 209.The obtained 9Be global opt...We achieved a set of 9Be global phenomenological optical model potentials by fitting a large experimental dataset of the elastic scattering observable for target mass numbers from 24 to 209.The obtained 9Be global optical model potential was applied to predict elastic-scattering angular distributions and total reaction cross-sections of 8,10,11B projectiles.The predictions are made by performing a detailed analysis comparing with the available experimental data.Furthermore,these elastic scattering observables are also predicted for some lighter targets outside of the given mass number range,and reasonable results are obtained.Possible physical explanations for the observed differences are also discussed.展开更多
We report a 42Ohm external cavity diode laser with an interference filter (IF) of 0.5am narrow-bandwidth and 79% high transmission, which is first used for Rb optical frequency standard. The IF and the cat-eye refle...We report a 42Ohm external cavity diode laser with an interference filter (IF) of 0.5am narrow-bandwidth and 79% high transmission, which is first used for Rb optical frequency standard. The IF and the cat-eye reflector are used for selecting wavelength and light feedback, respectively. The measured laser linewidth is 24 kHz when the diode laser is free running. Using this narrow-linewidth IF blue diode laser, we realize a compact Rb optical frequency standard without a complicated PDH system. The preliminary stability of the Rb optical frequency standard is 2 × 10^-13 at I s and decreases to 1.9 ×10^-14 at 1000s. The narrow-linewidth characteristic makes the IF blue diode laser a well suited candidate for the compact Rb optical frequency standard.展开更多
In this study,we proposed a novel micro-scale additive manufacturing method based on the optical potential formed by a Bessel beam.The proposed technique is expected to show no deterioration in manufacturing resolutio...In this study,we proposed a novel micro-scale additive manufacturing method based on the optical potential formed by a Bessel beam.The proposed technique is expected to show no deterioration in manufacturing resolution due to heat genera-tion,to be applicable to various materials,and to be able to be performed in an air environment.The basic principle of the proposed method involves accumulating and stacking particles dispersed in air by using optical radiation pressure.In this paper,the trajectory of the accumulated particles was numerically estimated and experimentally observed.The numerical and experimental results agreed well;specfially,the back ground flow carried the particles to the optical axis of the Bessel beam,and then the particles were localized at the bottom of the optical potential valley on the substrate.Finally,a pillar structure was fabricated with polystyrene particles having a diameter of 1 um,which indicated that the proposed technique was promising for practical applications.展开更多
The consistent three-body model reaction methodology(TBMRM)proposed by J.Lee et al.[Phys.Rev.C 69,064313(2004);Phys.Rev.C 73,044608(2006);Phys.Rev.C 75,064320(2007)],which includes adopting the simple zero-range adiab...The consistent three-body model reaction methodology(TBMRM)proposed by J.Lee et al.[Phys.Rev.C 69,064313(2004);Phys.Rev.C 73,044608(2006);Phys.Rev.C 75,064320(2007)],which includes adopting the simple zero-range adiabatic wave approximation,constraining the single-particle potentials using modern Hartree-Fock calculations,and using global nucleon optical model potential(OMP)geometries,are widely applied in systematic studies of transfer reactions.In this study,we investigate the influence of different nucleon OMPs in extracting spectroscopic factors(SFs)from(p,d)reactions.Our study covers 32 sets of angular distribution data of(p,d)reactions on four targets and a large range of incident energies(20-200 MeV/nucleon).This study uses two semi-microscopic nucleon OMPs,i.e.,Jeukenne,Lejeune,and Mahaux(JLM)[Phys.Rev.C 16,80(1977);Phys.Rev.C 58,1118(1998)]and CTOM[Phys.Rev.C 94,034606(2016)],and a pure microscopic nucleon potential,i.e.,WLH[Phys.Rev.Lett.127,182502(2021)].The results are compared with those using the phenomenological global optical potential KD02[Nucl.Phys.A 713,231(2003)].We find that the incident energy dependence of spectroscopic factors extracted from(p,d)reactions is evidently suppressed when microscopic OMPs are employed for ^(12)C,^(28)Si,and 40Ca.In addition,spectroscopic factors extracted using the systematic microscopic optical potential CTOM based on the Dirac-Brueckner-Hartree-Fock theory are more in line with the results obtained from(e,e′p)measurements,except for 16O and ^(40)Ca at high energies(>100 MeV),necessitating an exact treatment of double-magic nuclei.The results obtained by using the pure microscopic optical potential,WLH,based on the EFT theory show the same trend as those of CTOM but are generally higher.The JLM potential,which relies on simplified nuclear matter calculations with old-fashioned bare interactions,produces results that are very similar to those of the phenomenological potential KD02.Our results indicate that modern microscopic OMPs are reliable tools for probing the nuclear structure using transfer reactions across a wide energy range.展开更多
Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile ...Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND_3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of20 k W in power focused into a pot of 40 μm in waist radius, ND3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24?with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.展开更多
Glaucoma is the second leading cause of irreversible vision impairment affecting more than 70 million people worldwide with approximately 10%suffering from glaucoma-related bilateral blind(Quigley and Broman,2006).I...Glaucoma is the second leading cause of irreversible vision impairment affecting more than 70 million people worldwide with approximately 10%suffering from glaucoma-related bilateral blind(Quigley and Broman,2006).It is a multi-factorial disease that is characterized by optic nerve damage and visual field loss.Progressive loss of retinal ganglion cells(RGCs)resulting in visual field deficits is the hallmark of glaucoma.展开更多
AIM: To detect the relationship between infusion pressure and postoperative ganglion cells function.METHODS: This prospective observational cohort study included sixty-one eyes that underwent uncomplicated cataract ...AIM: To detect the relationship between infusion pressure and postoperative ganglion cells function.METHODS: This prospective observational cohort study included sixty-one eyes that underwent uncomplicated cataract surgery. Patients were divided into two groups according to infusion time(IT) recorded using surgery equipment [Group A: IT〉IT_(mean)(27 eyes); Group B: IT展开更多
Optic neuropathies or optic nerve diseases are a frequent cause of permanent vision loss that can occur after inflammation,ischemia,infection,tumors,trauma and/or an elevated pressure inside the eye(also called intra...Optic neuropathies or optic nerve diseases are a frequent cause of permanent vision loss that can occur after inflammation,ischemia,infection,tumors,trauma and/or an elevated pressure inside the eye(also called intraocular pressure or IOP).展开更多
基金Supported by National Natural Science Foundation of China(Nos.U2067205 and 12205098)National Key Laboratory of Computational Physics(HX02021-35).
文摘The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.
基金国家自然科学基金,国家重点基础研究发展计划(973计划),中国科学院基金,Research Fund of Higher Education
文摘The Dirac optical potential for p-14Be elastic scattering is evaluated by the relativistic impulse approximation. Each of the real part and the imaginary part of the potential shows a pronounced "long tail" for the proton elastic scattering from halo nucleus 14Be compared with the potentials for proton scattering from its adjacent nuclei 12C and 16O, which do not have halo structures. This kind of "long tail" phenomenon suggests another signature for halo nuclei.
基金Supported by the National Natural Science Foundation of China under Grant No 11205036the Fundamental Research Funds for the Central Universities of China under Grant No HEUCF101501
文摘A common optical potential for 4He+12C at intermediate bombarding energies, which is essential in analyzing exotic nuclei with 4He clusters, is obtained based on the Sao Paulo potential. Among systematic optical potentials for 4He+12 C, this potential has the merit of using a fixed imaginary part of the Woods Saxon form. By optical- model calculations, this potential reproduces the experimental elastic scattering angular distributions of a He+12 C well within the energy range of 26A 60A MeV. It is also applied successfully in calculations of the breakup reactions of 6Li+12 C and 6He+12 C with a three-body continuum discretized coupled-channel method.
文摘The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.
基金This work was supported by the National Natural Science Foundation of China(Nos.12005047 and U1832105).
文摘The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and farside scattering components.By contrast,the envelope method can decompose the experimental data into two components with negative and positive deflection angles,respectively.Hence,a question arises as to whether the comparison between the calculated nearside(or farside)component and the derived positive-deflection-angle(or negative-deflection-angle)component can help analyze the potential ambiguity problem.In this study,we conducted a trial application of the envelope method to the potential ambiguity problem.The envelope method was improved by including uncertainties in the experimental data.The colliding systems of 16O+28Si at 215.2 MeV and 12C+12C at 1016 MeV were considered in the analyses.For each colliding system,the angular distribution experimental data were described nearly equally well by two potential sets,one of which is“surface transpar-ent”and the other is refractive.The calculated angular distributions were decomposed into nearside and farside scattering components.Using the improved envelope method,the experimental data were decomposed into the positive-deflection-angle and negative-deflection-angle components,which were then compared with the calculated nearside and farside components.The capability of the envelope method to analyze the potential ambiguities was also discussed.
基金supported by the National Natural Science Foundation of China(No.U2067205).
文摘The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^(30)Si(^(3)He,d)^(31)P,^(13)B(d,^(3)He)^(12)Be,and^(34)S(^(3)He,d)^(35)Cl reactions at incident energies of 25,46,and 25 MeV,respectively,within the framework of the distorted wave Born approximation.The differential cross sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%,owing to the uncertainties in the optical model potentials from 20,000 calculations of randomly sampled parameters.This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies.Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross sections at different scattering angles are also discussed.
文摘For 112 target nuclei (52 elements) with proton as projectile, we calculate the reaction cross sections and elastic scattering angular distributions, as well as the X^2 values for 16 kinds of proton optical model potentials: two sets of phenomenological global optical potentials and the microscopic optical potentials proposed by Shen et al for 14 sets of Skyrme force parameters: GSI-6, SBJS, SKM, SGI-Ⅱ, SKa-b, SCOI-Ⅱ. We find that for obtaining the proton microscopic optical potential based on the nuclear matter approach with Skyrme force, SGI, SKa and SKb are the three sets of optimal Skyrme force parameters.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900
文摘We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.
基金supported by the Natural Science Foundation of Hunan Province of China (Grant No. 10JJ3088)the Key Research Foundation of the Education Bureau of Hunan Province of China (Grant Nos. 08A015 and 10A026)
文摘Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.
基金Project supported by the Research Program of the Hong Kong Polytechnic University (Grant No A-PA2Q)the Scientific and Technological Research Program of Education Department of Hubei Province, China (Grant No Z200722001)
文摘This paper investigates the dynamics of dark solitons in a Bose-Einstein condensate with a magnetic trap and an optical lattice (OL) trap, and analyses the effects of the periodic OL potential on the dynamics by applying the variational approach based on the renormalized integrals of motion. The results show that the dark soliton becomes only a standing-wave and free propagation of the dark soliton is not possible when the periodic length of the OL potential is approximately equal to the effective width of the dark soliton. When the periodic length is very small or very large, the effects of the OL potential on the dark soliton will be sharply reduced. Finally, the numerical results confirm these theoretical findings.
基金National Natural Science Foundation of China under Grant No.10575034Natural Science Foundation of Hunan Province of China under Grant Nos.06JJ2014 and 04JJ40006
文摘We study the nonlinear dynamics of two-component Bose-Einstein condensates in one-dimensional pe-riodic optical lattice potentials.The stationary state perturbation solutions of the coupled two-component nonlinearSchr?dinger/Gross-Pitaevskii equations are constructed by using the direct perturbation method.Theoretical analysisrevels that the perturbation solution is the chaotic one,which indicates the existence of chaos and chaotic region inparameter space.The corresponding numerical calculation results agree well with the analytical results.By applying thechaotic perturbation solution,we demonstrate the atomic spatial population and the energy distribution of the systemare chaotic generally.
基金supported by the China Ministry of Science and Technology (No. 2007CB209903)National Basic Research Program of China(973 Program)
文摘A set of new global phenomenological optical model potential parameters has been obtained in the mass range of target nuclei 220≤A≤260 with incident energies below 300 MeV, by simultaneously fitting the experimental data of 232Th and 23Su, and these potential parameters are analyzed and used to calculate the reaction cross sections, energy spectra and double differ- ential cross sections for p+232Th reaction. Comparison of calculated results using these potential parameters with available experimental data shows that the present form of global optical model potential could reproduce experimental data for both the neutron and the proton.
基金Supported by the National Natural Science Foundation of China(11405099 and 11575291)a part of IAEA Coordinated Research Projects(CRPs)on Recommended Input Parameter Library(RIPL)for Fission Cross Section Calculations(20464)
文摘We achieved a set of 9Be global phenomenological optical model potentials by fitting a large experimental dataset of the elastic scattering observable for target mass numbers from 24 to 209.The obtained 9Be global optical model potential was applied to predict elastic-scattering angular distributions and total reaction cross-sections of 8,10,11B projectiles.The predictions are made by performing a detailed analysis comparing with the available experimental data.Furthermore,these elastic scattering observables are also predicted for some lighter targets outside of the given mass number range,and reasonable results are obtained.Possible physical explanations for the observed differences are also discussed.
基金Supported by the China Academy of Space Technology Foundation under Grant No CAST-2015-5-10the National Hi-Tech Research and Development Programthe National Natural Science Foundation of China under Grant No 91436210
文摘We report a 42Ohm external cavity diode laser with an interference filter (IF) of 0.5am narrow-bandwidth and 79% high transmission, which is first used for Rb optical frequency standard. The IF and the cat-eye reflector are used for selecting wavelength and light feedback, respectively. The measured laser linewidth is 24 kHz when the diode laser is free running. Using this narrow-linewidth IF blue diode laser, we realize a compact Rb optical frequency standard without a complicated PDH system. The preliminary stability of the Rb optical frequency standard is 2 × 10^-13 at I s and decreases to 1.9 ×10^-14 at 1000s. The narrow-linewidth characteristic makes the IF blue diode laser a well suited candidate for the compact Rb optical frequency standard.
基金This work was financially supported by the Japan Prize Foundation and MEXT/JSPS KAKENHI(No.17H04900).The authors sincerely thank Prof.Preston for his kind advice on the code for calculating the optical force due to the Bessel beam.
文摘In this study,we proposed a novel micro-scale additive manufacturing method based on the optical potential formed by a Bessel beam.The proposed technique is expected to show no deterioration in manufacturing resolution due to heat genera-tion,to be applicable to various materials,and to be able to be performed in an air environment.The basic principle of the proposed method involves accumulating and stacking particles dispersed in air by using optical radiation pressure.In this paper,the trajectory of the accumulated particles was numerically estimated and experimentally observed.The numerical and experimental results agreed well;specfially,the back ground flow carried the particles to the optical axis of the Bessel beam,and then the particles were localized at the bottom of the optical potential valley on the substrate.Finally,a pillar structure was fabricated with polystyrene particles having a diameter of 1 um,which indicated that the proposed technique was promising for practical applications.
基金Supported by the National Natural Science Foundation of China(U2067205,12205098)the National Key Research and Development Program of China(2022YFA1602403)。
文摘The consistent three-body model reaction methodology(TBMRM)proposed by J.Lee et al.[Phys.Rev.C 69,064313(2004);Phys.Rev.C 73,044608(2006);Phys.Rev.C 75,064320(2007)],which includes adopting the simple zero-range adiabatic wave approximation,constraining the single-particle potentials using modern Hartree-Fock calculations,and using global nucleon optical model potential(OMP)geometries,are widely applied in systematic studies of transfer reactions.In this study,we investigate the influence of different nucleon OMPs in extracting spectroscopic factors(SFs)from(p,d)reactions.Our study covers 32 sets of angular distribution data of(p,d)reactions on four targets and a large range of incident energies(20-200 MeV/nucleon).This study uses two semi-microscopic nucleon OMPs,i.e.,Jeukenne,Lejeune,and Mahaux(JLM)[Phys.Rev.C 16,80(1977);Phys.Rev.C 58,1118(1998)]and CTOM[Phys.Rev.C 94,034606(2016)],and a pure microscopic nucleon potential,i.e.,WLH[Phys.Rev.Lett.127,182502(2021)].The results are compared with those using the phenomenological global optical potential KD02[Nucl.Phys.A 713,231(2003)].We find that the incident energy dependence of spectroscopic factors extracted from(p,d)reactions is evidently suppressed when microscopic OMPs are employed for ^(12)C,^(28)Si,and 40Ca.In addition,spectroscopic factors extracted using the systematic microscopic optical potential CTOM based on the Dirac-Brueckner-Hartree-Fock theory are more in line with the results obtained from(e,e′p)measurements,except for 16O and ^(40)Ca at high energies(>100 MeV),necessitating an exact treatment of double-magic nuclei.The results obtained by using the pure microscopic optical potential,WLH,based on the EFT theory show the same trend as those of CTOM but are generally higher.The JLM potential,which relies on simplified nuclear matter calculations with old-fashioned bare interactions,produces results that are very similar to those of the phenomenological potential KD02.Our results indicate that modern microscopic OMPs are reliable tools for probing the nuclear structure using transfer reactions across a wide energy range.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504112,91536218,and 11604100)
文摘Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND_3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of20 k W in power focused into a pot of 40 μm in waist radius, ND3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24?with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.
基金supported by Institut Pengurusan Penyelidikan(RMI)Universiti Teknologi MARA,Malaysia,under the grant No.600-IRMI/MyRA 5/3/LESTARI(0088/2016)and 600-IRMI/DANA 5/3/LESTARI(0076/2016)
文摘Glaucoma is the second leading cause of irreversible vision impairment affecting more than 70 million people worldwide with approximately 10%suffering from glaucoma-related bilateral blind(Quigley and Broman,2006).It is a multi-factorial disease that is characterized by optic nerve damage and visual field loss.Progressive loss of retinal ganglion cells(RGCs)resulting in visual field deficits is the hallmark of glaucoma.
基金Supported by the Beijing Municipal Commission of Science and Technology(No.Z151100004015073)
文摘AIM: To detect the relationship between infusion pressure and postoperative ganglion cells function.METHODS: This prospective observational cohort study included sixty-one eyes that underwent uncomplicated cataract surgery. Patients were divided into two groups according to infusion time(IT) recorded using surgery equipment [Group A: IT〉IT_(mean)(27 eyes); Group B: IT
基金financially supported by the Hercules Grant[AKUL/09/038]national Grants from the Research Council of KU Leuven[KU Leuven BOF-OT/10/033]the Flemish Institute for the promotion of scientific research(IWT and FWO)
文摘Optic neuropathies or optic nerve diseases are a frequent cause of permanent vision loss that can occur after inflammation,ischemia,infection,tumors,trauma and/or an elevated pressure inside the eye(also called intraocular pressure or IOP).