The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a...The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.展开更多
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first...The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.展开更多
Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.I...Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.展开更多
Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial ...Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range.These research findings can give hints for designing thermoelectric and photovoltaic devices.展开更多
We perform the first-principles calculations within the framework of density functional theory to determine the elec- tronic structure and optical properties of MgxZnl-xS bulk crystal. The results indicate that the el...We perform the first-principles calculations within the framework of density functional theory to determine the elec- tronic structure and optical properties of MgxZnl-xS bulk crystal. The results indicate that the electronic structure and optical properties of MgxZnl_xS bulk crystal are sensitive to the Mg impurity composition. In particular, the MgxZnl-xS bulk crystal displays a direct band structure and the band gap increases from 2.05 eV to 2.91 eV with Mg dopant compo- sition value x increasing from 0 to 0.024. The S 3p electrons dominate the top of valence band, while the Zn 4s electrons and Zn 3p electrons occupy the bottom of conduction band in MgxZnl_xS bulk crystal. Moreover, the dielectric constant decreases and the optical absorption peak obviously has a blue shift. The calculated results provide important theoretical guidance for the applications of MgxZn1-xS bulk crystal in optical detectors.展开更多
Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored...Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory.The results indicate that the direct band gap(1.95 e V)of the Ga N-MoS2 HS is lower than the individual band gaps of both the GaN layer(3.48 e V)and the MoS2 layer(2.03 eV)based on HSE06 hybrid functional calculations.Specifically,the GaN-MoS2 HS is a typical type-II band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency.Under tensile or compressive strain,the direct band gap of the GaN-MoS2 HS undergoes redshifts.Additionally,the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5%or-5%.Therefore,the results reported above can be used to expand the application of Ga N-MoS2 HSs to photovoltaic cells and photocatalysts.展开更多
The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first- principles calculations. The results show that the lattice constants change linearly with stress. Ban...The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first- principles calculations. The results show that the lattice constants change linearly with stress. Band gaps are broadened linearly as the uniaxial compressive stress increases. The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction, and the reason for band gap of n-type ZnO changing with stress is also explained. The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy. However, when the energy is higher than 4.0 eV, the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears. There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV. The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO, which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.展开更多
The detailed theoretical studies of electronic,optical,and mechanical properties of γ-Bi2Sn2O7 are carried out by using first-principle density functional theory calculations.Our calculated results indicate that γ-B...The detailed theoretical studies of electronic,optical,and mechanical properties of γ-Bi2Sn2O7 are carried out by using first-principle density functional theory calculations.Our calculated results indicate that γ-Bi2Sn2O7 is the p-type semiconductor with an indirect band gap of about 2.72 e V.The flat electronic bands close to the valence band maximum are mainly composed of Bi-6s and O-2p states and play a key role in determining the electrical properties of γ-Bi2Sn2O7.The calculated complex dielectric function and macroscopic optical constants including refractive index,extinction coefficient,absorption coefficients,reflectivity,and electron energy-loss function show that γ-Bi2Sn2O7 is an excellent light absorbing material.The analysis on mechanical properties shows that γ-Bi2Sn2O7 is mechanically stable and highly isotropic.展开更多
The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hyb...The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6, 2.36 eV for Cs2SnBr6, and 0.92 eV for Cs2SnI6, which agree with the experimental results. The Cs2SnCl6, Cs2SnBr6, and Cs2SnI6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.展开更多
Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation i...Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.展开更多
A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F poi...A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated.展开更多
A detailed study of the M_3N_4(M = Si,Ge,Sn) nitrides in their tetragonal,monoclinic and orthorhombic phases has been performed with the plane-wave pseudo-potential method combined with the quasi-harmonic approximat...A detailed study of the M_3N_4(M = Si,Ge,Sn) nitrides in their tetragonal,monoclinic and orthorhombic phases has been performed with the plane-wave pseudo-potential method combined with the quasi-harmonic approximation,including the phononic effects.We rationalize the main puzzle,i.e.,the fundamental properties of these phases are unclear,by calculating the crystal structures,density of states,and optical properties.The direct band gaps of t-Ge_3N_4,m-Si_3N_4,and o-Ge_3N_4 benefit the opto-electrical properties,t-,m-,and o-Si_3N_4 can be used as refractive materials while m-M_3N_4(M = Si,Ge,Sn) are optically transparent in the visible light region.Our results improve the understanding of the detailed electronic structures of all compounds,as well as the influences of electronic structure on their stabilities.Furthermore,we find that thermodynamic quantities are sensitive to structures and,therefore,depend on various temperature and pressure conditions.展开更多
Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renorma...Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renormalization arising from electron-phonon coupling.We find a sizable zero-point motion correction of-0.362 eV to the gap atΓ,which is dominated by the contributions of long-wavelength longitudinal optical phonons.The bandgap ofβ-LiGaO_(2)decreases monotonically with increasing temperature.We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation.The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects,in qualitative agreement with the experiment.The contributing interband transitions and the binding energy for the excitonic states are analyzed.展开更多
The linear optical properties of potassium dihydrogen phosphate(KDP) with oxygen vacancy are investigated with first-principles density functional theory calculations. We use Heyd–Scuseria–Ernzerhof(HSE06) funct...The linear optical properties of potassium dihydrogen phosphate(KDP) with oxygen vacancy are investigated with first-principles density functional theory calculations. We use Heyd–Scuseria–Ernzerhof(HSE06) functional to calculate the linear optical properties because of its accuracy in the band gap calculation. Compared with the perfect KDP, we found that due to the defect states located at the band gap, the defective KDP with oxygen vacancy has new optical adsorption within the energy region from 4.8 eV to 7.0 eV(the corresponding wavelength region is from 258 nm to 177 nm). As a result, the oxygen vacancy can decrease the damage threshold of KDP crystal. It may give a direction to the KDP production for laser system.展开更多
The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electr...The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.展开更多
The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene...The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene (SnF) by means of density functional theory. Remarkably, a significant spin-orbit coupling is observed for the SnF monolayer in the valence band at the F point, with a considerable indirect band gap of 278 meV. The direct gap of the SnF monolayer is at the F point, which is slightly larger by as much as 381 meV. In addition, the elastic modulus of the SnF monolayer is about 20J/m^2, which is comparable with the in-plane stiffness of black phos- phorus monolayer along the x-direction (~28.94 J/m^2). Finally, the optical properties of stanene, SnF monolayer and stanene/SnF bilayer are calculated, in which the stanene/SnF bilayer is supposed to be an attractive sunlight absorber.展开更多
A supercell of a nanotube formed by a carbon nanotube (CNT) and a silicon nanotube (SiNT) is established. The electronic structure and optical properties are implemented through the first-principles method based on th...A supercell of a nanotube formed by a carbon nanotube (CNT) and a silicon nanotube (SiNT) is established. The electronic structure and optical properties are implemented through the first-principles method based on the density functional theory (DFT) with the generalized gradient approximation (GGA). The calculated results show that (6, 6) - (6, 6) silicon/carbon nanotubes (Si/CNTs) presented a direct band gap of 0.093 eV, (4, 4) - (6, 6) silicon/carbon nanotubes presented a direct band gap of 0.563 eV. The top of valence band was fundamentally determined by the Si-3p states and C-2p states, and the bottom of conduction band was primarily occupied by the C-2p states and Si-3p states in the Si/CNTs. It was found that (6, 6) - (6, 6) Si/CNTs have smaller energy band gap and better conductivity. Besides, Si/CNTs have satisfactory absorption characteristics and luminous efficiency in ultraviolet band.展开更多
A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Bu...A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.展开更多
In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered te...In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells.展开更多
The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O....The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.展开更多
基金Projects(L2014051,LT2014004)supported by the Program for Scientific Technology Plan of the Educational Department of Liaoning Province,China
文摘The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.
文摘The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.
基金Project(61172047) supported by the National Natural Science Foundation of China
文摘Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.
基金supported by the National Natural Science Foundation of China(Grant No.11304105)
文摘Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range.These research findings can give hints for designing thermoelectric and photovoltaic devices.
基金Projected supported by the National Natural Science Foundation of China(Grant Nos.61076042 and 61474048)
文摘We perform the first-principles calculations within the framework of density functional theory to determine the elec- tronic structure and optical properties of MgxZnl-xS bulk crystal. The results indicate that the electronic structure and optical properties of MgxZnl_xS bulk crystal are sensitive to the Mg impurity composition. In particular, the MgxZnl-xS bulk crystal displays a direct band structure and the band gap increases from 2.05 eV to 2.91 eV with Mg dopant compo- sition value x increasing from 0 to 0.024. The S 3p electrons dominate the top of valence band, while the Zn 4s electrons and Zn 3p electrons occupy the bottom of conduction band in MgxZnl_xS bulk crystal. Moreover, the dielectric constant decreases and the optical absorption peak obviously has a blue shift. The calculated results provide important theoretical guidance for the applications of MgxZn1-xS bulk crystal in optical detectors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11864011)the Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB390)the Doctoral Fund Project of Hubei Minzu University,China(Grant No.MY2017B015)
文摘Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory.The results indicate that the direct band gap(1.95 e V)of the Ga N-MoS2 HS is lower than the individual band gaps of both the GaN layer(3.48 e V)and the MoS2 layer(2.03 eV)based on HSE06 hybrid functional calculations.Specifically,the GaN-MoS2 HS is a typical type-II band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency.Under tensile or compressive strain,the direct band gap of the GaN-MoS2 HS undergoes redshifts.Additionally,the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5%or-5%.Therefore,the results reported above can be used to expand the application of Ga N-MoS2 HSs to photovoltaic cells and photocatalysts.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61076098)the Innovative Foundation for Doctoral Candidate of Jiangsu Province, China (Grant No. CX10B 252Z)
文摘The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first- principles calculations. The results show that the lattice constants change linearly with stress. Band gaps are broadened linearly as the uniaxial compressive stress increases. The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction, and the reason for band gap of n-type ZnO changing with stress is also explained. The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy. However, when the energy is higher than 4.0 eV, the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears. There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV. The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO, which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB643703)the National Natural Science Foundation of China(Grant Nos.11164005,11464008,and 51401060)+1 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant Nos.2014GXNSFGA118001 and 2012GXNSFGA060002)the Fund from Guangxi Provincial Key Laboratory of Information Materials of Guangxi Zhuang Autonomous Region,China(Grant Nos.1210908-215-Z and 131022-Z)
文摘The detailed theoretical studies of electronic,optical,and mechanical properties of γ-Bi2Sn2O7 are carried out by using first-principle density functional theory calculations.Our calculated results indicate that γ-Bi2Sn2O7 is the p-type semiconductor with an indirect band gap of about 2.72 e V.The flat electronic bands close to the valence band maximum are mainly composed of Bi-6s and O-2p states and play a key role in determining the electrical properties of γ-Bi2Sn2O7.The calculated complex dielectric function and macroscopic optical constants including refractive index,extinction coefficient,absorption coefficients,reflectivity,and electron energy-loss function show that γ-Bi2Sn2O7 is an excellent light absorbing material.The analysis on mechanical properties shows that γ-Bi2Sn2O7 is mechanically stable and highly isotropic.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572219 and 11447030)the Natural Science Foundation of Shaanxi Province of China(Grant No.2015JM1018)Graduate’s Innovation Fund of Northwest University of China(Grant No.YJG15007)
文摘The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6, 2.36 eV for Cs2SnBr6, and 0.92 eV for Cs2SnI6, which agree with the experimental results. The Cs2SnCl6, Cs2SnBr6, and Cs2SnI6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos.60908028 and 60971068
文摘Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No.51074129)
文摘A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475132 and 61501392)
文摘A detailed study of the M_3N_4(M = Si,Ge,Sn) nitrides in their tetragonal,monoclinic and orthorhombic phases has been performed with the plane-wave pseudo-potential method combined with the quasi-harmonic approximation,including the phononic effects.We rationalize the main puzzle,i.e.,the fundamental properties of these phases are unclear,by calculating the crystal structures,density of states,and optical properties.The direct band gaps of t-Ge_3N_4,m-Si_3N_4,and o-Ge_3N_4 benefit the opto-electrical properties,t-,m-,and o-Si_3N_4 can be used as refractive materials while m-M_3N_4(M = Si,Ge,Sn) are optically transparent in the visible light region.Our results improve the understanding of the detailed electronic structures of all compounds,as well as the influences of electronic structure on their stabilities.Furthermore,we find that thermodynamic quantities are sensitive to structures and,therefore,depend on various temperature and pressure conditions.
基金Project support from the National Natural Science Foundation of China(Grant No.11604254)the Natural Science Foundation of Shaanxi ProvinceChina(Grant No.2019JQ-240)。
文摘Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renormalization arising from electron-phonon coupling.We find a sizable zero-point motion correction of-0.362 eV to the gap atΓ,which is dominated by the contributions of long-wavelength longitudinal optical phonons.The bandgap ofβ-LiGaO_(2)decreases monotonically with increasing temperature.We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation.The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects,in qualitative agreement with the experiment.The contributing interband transitions and the binding energy for the excitonic states are analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474123)the Natural Science Foundation of Jilin Province,China(Grant No.20130101011JC)the Fundamental Research Funds for Central Universities of China
文摘The linear optical properties of potassium dihydrogen phosphate(KDP) with oxygen vacancy are investigated with first-principles density functional theory calculations. We use Heyd–Scuseria–Ernzerhof(HSE06) functional to calculate the linear optical properties because of its accuracy in the band gap calculation. Compared with the perfect KDP, we found that due to the defect states located at the band gap, the defective KDP with oxygen vacancy has new optical adsorption within the energy region from 4.8 eV to 7.0 eV(the corresponding wavelength region is from 258 nm to 177 nm). As a result, the oxygen vacancy can decrease the damage threshold of KDP crystal. It may give a direction to the KDP production for laser system.
基金Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212104) and the Foundation for University Young Core Instructors of Henan Province, China (Grant No. 2010GGJS-066).
文摘The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.
基金Supported by the Science Foundation of Nanjing University of Posts and Telecommunications under Grant No NY215064the China Postdoctoral Science Foundation under Grant No 2015M581824the Jiangsu Post-doctoral Foundation under Grant No1501070B
文摘The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene (SnF) by means of density functional theory. Remarkably, a significant spin-orbit coupling is observed for the SnF monolayer in the valence band at the F point, with a considerable indirect band gap of 278 meV. The direct gap of the SnF monolayer is at the F point, which is slightly larger by as much as 381 meV. In addition, the elastic modulus of the SnF monolayer is about 20J/m^2, which is comparable with the in-plane stiffness of black phos- phorus monolayer along the x-direction (~28.94 J/m^2). Finally, the optical properties of stanene, SnF monolayer and stanene/SnF bilayer are calculated, in which the stanene/SnF bilayer is supposed to be an attractive sunlight absorber.
文摘A supercell of a nanotube formed by a carbon nanotube (CNT) and a silicon nanotube (SiNT) is established. The electronic structure and optical properties are implemented through the first-principles method based on the density functional theory (DFT) with the generalized gradient approximation (GGA). The calculated results show that (6, 6) - (6, 6) silicon/carbon nanotubes (Si/CNTs) presented a direct band gap of 0.093 eV, (4, 4) - (6, 6) silicon/carbon nanotubes presented a direct band gap of 0.563 eV. The top of valence band was fundamentally determined by the Si-3p states and C-2p states, and the bottom of conduction band was primarily occupied by the C-2p states and Si-3p states in the Si/CNTs. It was found that (6, 6) - (6, 6) Si/CNTs have smaller energy band gap and better conductivity. Besides, Si/CNTs have satisfactory absorption characteristics and luminous efficiency in ultraviolet band.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos. 60908028 and 60971068
文摘A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.
文摘In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells.
基金Project(2014GXNSFAA118342)supported by Guangxi Natural Science Foundation,ChinaProject supported by Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,ChinaProject supported by High-level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),China
文摘The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.