An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and...An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.展开更多
A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it a...A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it accounts for the limited acceptance angle of the detectorber.The rened model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reectance at SDSs of units of mm.Cases of uniform dermis and two-layered epidermis-dermis structures are studied.Higher accuracy of the rened model compared to the conventional one is demonstrated in the separate,constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data.In the case of epidermis-dermis geometry,the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models.Presumably,in the presence of a thin mismatched topical layer,only the effective attenuation coe±cient of the bottom layer can be accurately recovered using a diffusion theorybased analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images.These-ndings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.展开更多
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan...Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.展开更多
We propose a new algorithm for wavefront sensing based on binary intensity modulation. The algorithm is based on the fact that a wavefront can be expended with a series of orthogonal and binary functions, the Walsh se...We propose a new algorithm for wavefront sensing based on binary intensity modulation. The algorithm is based on the fact that a wavefront can be expended with a series of orthogonal and binary functions, the Walsh series. We use a spatial light modulator(SLM) to produce different binary-intensity-modulation patterns which are the simple linear transformation of the Walsh series. The optical fields under different binary-intensity-modulation patterns are detected with a photodiode.The relationships between the incident wavefront modulated with the patterns and their optical fields are built to determinate the coefficients of the Walsh series. More detailed and strict relationship equations are established with the algorithm by adding new modulation patterns according to the properties of the Walsh functions. An exact value can be acquired by solving the equations. Finally, with the help of phase unwrapping and smoothing, the wavefront can be reconstructed. The advantage of the algorithm is providing an analytical solution for the coefficients of the Walsh series to reconstruct the wavefront. The simulation experiments are presented and the effectiveness of the algorithm is demonstrated.展开更多
Bioluminescence tomography(BLT)is a novel opt ical molecular imaging technique that advanced the conventional planar bioluminescence imaging(BLI)into a quantifiable three-dimensional(3D)approach in preclinical living ...Bioluminescence tomography(BLT)is a novel opt ical molecular imaging technique that advanced the conventional planar bioluminescence imaging(BLI)into a quantifiable three-dimensional(3D)approach in preclinical living animal studies in oncology.In order to solve the inverse problem and reconstruct tumor lesions inside animal body accurately,the prior structural information is com-monly obtained from X ray computed tomography(CT).This strategy requires a complicated hybrid imaging system,extensive post imaging analysis and involvement of ionizing radiation.Moreover,the overall robustness highly depends on the fusion accuracy between the optical and structural information.Here,we present a pure optical bioluminescence tomographic(POBT)system and a novel BLT workfow based on multi-view projection acquisition and 3D surface reconstruction.This met hod can reconstruct the 3D surface of an imaging subject based on a sparse set of planar white-light and bioluminescent images,so that the prior structural information can be offered for 3D tumor lesion reconstruction without the involvement of CT.The performance of this novel technique was evaluated through the comparison with a conventional dual-modality tomo-graphic(DMT)system and a commercialized optical imaging system(IVIS Spectrum)using three breast cancer xenografts.The results revealed that the new technique offered comparable in vivo tomographic accuracy with the DMT system(P>0.05)in much shorter data analysis time.It also offered significantly better accuracy comparing with the IVIS system(P<0.04)without sacrificing too much time.展开更多
Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-las...Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-laser guide stars(LGSs) are currently being investigated and used for the large aperture optical telescopes.LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system.We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation.By comparing with the conventional average method,the proposed method reduces the root mean square(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV.We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.展开更多
Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular pro...Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular processes happened in nanoscale.The development of super-resolution microscopy provides a solution to this challenge.Here,we briefly review several commonly used super-resolution techniques,explicating their basic principles and applications in biological science,especially in neuroscience.In addition,characteristics and limitations of each techrique are compared to provide a guidance for biologists to choose the most suitable tool.展开更多
Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic met...Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic method still has some inevitable disadvantages. In this paper, we present an optical plasma boundary reconstruction algorithm. This method uses EFIT reconstruction results as the standard to create the optimally optical reconstruction. Traditional edge detection methods cannot extract a clear plasma boundary for reconstruction. Based on global contrast, we propose an edge detection algorithm to extract the plasma boundary in the image plane. Illumination in this method is robust. The extracted boundary and the boundary reconstructed by EFIT are fitted by same-order polynomials and the transformation matrix exists. To acquire this matrix without camera calibration, the extracted plasma boundary is transformed from the image plane to the Tokamak poloidal plane by a mathematical model,which is optimally resolved by using least squares to minimize the error between the optically reconstructed result and the EFIT result. Once the transform matrix is acquired, we can optically reconstruct the plasma boundary with only an arbitrary image captured. The error between the method and EFIT is presented and the experimental results of different polynomial orders are discussed.展开更多
Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconst...Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.展开更多
The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT...The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.展开更多
The present work describes the use of noninvasive diffuse optical tomography(DOT)technology to measure hemodynamic changes,providing relevant information which helps to understand the basis of neurophysiology in the h...The present work describes the use of noninvasive diffuse optical tomography(DOT)technology to measure hemodynamic changes,providing relevant information which helps to understand the basis of neurophysiology in the human brain.Advantages such as portability,direct measurements of hemoglobin state,temporal resolution,non-restricted movements as occurs in magnetic resonance imaging(MRI)devices mean that DOT technology can be used in research and clinical fields.In this review we covered the neurophysiology,physical principles underlying optical imaging during tissue-light interactions,and technology commonly used during the construction of a DOT device including the source-detector requirements to improve the image quality.DOT provides 3 D cerebral activation images due to complex mathematical models which describe the light propagation inside the tissue head.Moreover,we describe briefly the use of Bayesian methods for raw DOT data filtering as an alternative to linear filters widely used in signal processing,avoiding common problems such as the filter selection or a false interpretation of the results which is sometimes due to the interference of background physiological noise with neural activity.展开更多
Endogenous biomolecules in cells are the basis of all life activities.Directly visualizing the structural characteristics and dynamic behaviors of cellular biomolecules is signiffcant for understanding the molecular m...Endogenous biomolecules in cells are the basis of all life activities.Directly visualizing the structural characteristics and dynamic behaviors of cellular biomolecules is signiffcant for understanding the molecular mechanisms in various biological processes.Singlemolecule localization microscopy(SMLM)can circumvent the optical diffraction limit,achieving analysis of the ffne structures and biological processes in living cells with nanoscale resolution.However,the large size of traditional imaging probes prevents SMLM from accurately locating ffne structures and densely distributed biomolecules within cells.In recent years,nucleic acid probes have emerged as potential tools to replace conventional SMLM probes by virtue of their small size and high speciffcity.In addition,due to their programmability,nucleic acid probes with different conformations can be constructed via sequence design,further extending the application of SMLM in bioanalysis.Here,we discuss the design concepts of different conformational nucleic acid probes for SMLM and summarize the application of SMLM based on nucleic acid probes in the ffeld of biomolecules.Furthermore,we provide a summary and future perspectives of the nucleic acid probe-based SMLM technology,aiming to provide guidance for the acquisition of nanoscale information about cellular biological processes.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61205144the Research Project of National University of Defense Technology under Grant No JC13-07-01the Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences
文摘An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
基金supported by the Center of Excellence\Center of Photonics"funded by The Ministry of Science and Higher Education of the Russian Federation,Contract.№.075-15-2022-316.E.A.S.thanks Dr.Lev S.Dolin for fruitful discussions.
文摘A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it accounts for the limited acceptance angle of the detectorber.The rened model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reectance at SDSs of units of mm.Cases of uniform dermis and two-layered epidermis-dermis structures are studied.Higher accuracy of the rened model compared to the conventional one is demonstrated in the separate,constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data.In the case of epidermis-dermis geometry,the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models.Presumably,in the presence of a thin mismatched topical layer,only the effective attenuation coe±cient of the bottom layer can be accurately recovered using a diffusion theorybased analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images.These-ndings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.
基金Supported by the National Natural Science Foundation of China(NSFC 61501396)the Colleges and Universities under the Science and Technology Research Projects of Hebei Province(QN2015021)
文摘Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.
基金Project supported by the National Innovation Fund of Chinese Academy of Sciences(Grant No.CXJJ-16M208)the Preeminent Youth Fund of Sichuan Province,China(Grant No.2012JQ0012)the Outstanding Youth Science Fund of Chinese Academy of Sciences
文摘We propose a new algorithm for wavefront sensing based on binary intensity modulation. The algorithm is based on the fact that a wavefront can be expended with a series of orthogonal and binary functions, the Walsh series. We use a spatial light modulator(SLM) to produce different binary-intensity-modulation patterns which are the simple linear transformation of the Walsh series. The optical fields under different binary-intensity-modulation patterns are detected with a photodiode.The relationships between the incident wavefront modulated with the patterns and their optical fields are built to determinate the coefficients of the Walsh series. More detailed and strict relationship equations are established with the algorithm by adding new modulation patterns according to the properties of the Walsh functions. An exact value can be acquired by solving the equations. Finally, with the help of phase unwrapping and smoothing, the wavefront can be reconstructed. The advantage of the algorithm is providing an analytical solution for the coefficients of the Walsh series to reconstruct the wavefront. The simulation experiments are presented and the effectiveness of the algorithm is demonstrated.
基金the National Basic Research Program of China(973 Program)under Grant No.2015CB755500the National Natural Science Foundation of China under Grant No.81227901,61231004,81527805 and 61401462+3 种基金the Scienti¯c Research and Equipment Development Project of the Chinese Academy of Sciences under Grant No.YZ201359the Chinese Academy of Sciences under Grant No.KGZD-EW-T03the Chinese Academy of Sciences Fellowship for Young International Scientists under Grant No.2013Y1GA0004the Project funded by China Postdoctoral Science Foundation under Grant Nos.2014M550881,2015T80155.
文摘Bioluminescence tomography(BLT)is a novel opt ical molecular imaging technique that advanced the conventional planar bioluminescence imaging(BLI)into a quantifiable three-dimensional(3D)approach in preclinical living animal studies in oncology.In order to solve the inverse problem and reconstruct tumor lesions inside animal body accurately,the prior structural information is com-monly obtained from X ray computed tomography(CT).This strategy requires a complicated hybrid imaging system,extensive post imaging analysis and involvement of ionizing radiation.Moreover,the overall robustness highly depends on the fusion accuracy between the optical and structural information.Here,we present a pure optical bioluminescence tomographic(POBT)system and a novel BLT workfow based on multi-view projection acquisition and 3D surface reconstruction.This met hod can reconstruct the 3D surface of an imaging subject based on a sparse set of planar white-light and bioluminescent images,so that the prior structural information can be offered for 3D tumor lesion reconstruction without the involvement of CT.The performance of this novel technique was evaluated through the comparison with a conventional dual-modality tomo-graphic(DMT)system and a commercialized optical imaging system(IVIS Spectrum)using three breast cancer xenografts.The results revealed that the new technique offered comparable in vivo tomographic accuracy with the DMT system(P>0.05)in much shorter data analysis time.It also offered significantly better accuracy comparing with the IVIS system(P<0.04)without sacrificing too much time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-laser guide stars(LGSs) are currently being investigated and used for the large aperture optical telescopes.LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system.We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation.By comparing with the conventional average method,the proposed method reduces the root mean square(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV.We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.
基金support from National Basic Research Program of China (973 Program) (2015CB352005)National Natural Science Foundation of China (No.6142780065,31571110,81527901)+1 种基金Natural Science Foundation of Zhejiang Province of China (No.Y16F050002)the Fundamental Research Funds for the Central Universities.
文摘Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular processes happened in nanoscale.The development of super-resolution microscopy provides a solution to this challenge.Here,we briefly review several commonly used super-resolution techniques,explicating their basic principles and applications in biological science,especially in neuroscience.In addition,characteristics and limitations of each techrique are compared to provide a guidance for biologists to choose the most suitable tool.
基金supported by the National Natural Science Foundation of China(Nos.61375049 and 61473253)
文摘Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic method still has some inevitable disadvantages. In this paper, we present an optical plasma boundary reconstruction algorithm. This method uses EFIT reconstruction results as the standard to create the optimally optical reconstruction. Traditional edge detection methods cannot extract a clear plasma boundary for reconstruction. Based on global contrast, we propose an edge detection algorithm to extract the plasma boundary in the image plane. Illumination in this method is robust. The extracted boundary and the boundary reconstructed by EFIT are fitted by same-order polynomials and the transformation matrix exists. To acquire this matrix without camera calibration, the extracted plasma boundary is transformed from the image plane to the Tokamak poloidal plane by a mathematical model,which is optimally resolved by using least squares to minimize the error between the optically reconstructed result and the EFIT result. Once the transform matrix is acquired, we can optically reconstruct the plasma boundary with only an arbitrary image captured. The error between the method and EFIT is presented and the experimental results of different polynomial orders are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.
基金supported by the National Natural Science Foundation of China(Nos.81271618 and 81371602)the Tianjin Municipal Government of China(Nos.12JCQNJC09400 and 13JCZDJC28000)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110056)
文摘The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.
文摘The present work describes the use of noninvasive diffuse optical tomography(DOT)technology to measure hemodynamic changes,providing relevant information which helps to understand the basis of neurophysiology in the human brain.Advantages such as portability,direct measurements of hemoglobin state,temporal resolution,non-restricted movements as occurs in magnetic resonance imaging(MRI)devices mean that DOT technology can be used in research and clinical fields.In this review we covered the neurophysiology,physical principles underlying optical imaging during tissue-light interactions,and technology commonly used during the construction of a DOT device including the source-detector requirements to improve the image quality.DOT provides 3 D cerebral activation images due to complex mathematical models which describe the light propagation inside the tissue head.Moreover,we describe briefly the use of Bayesian methods for raw DOT data filtering as an alternative to linear filters widely used in signal processing,avoiding common problems such as the filter selection or a false interpretation of the results which is sometimes due to the interference of background physiological noise with neural activity.
基金supported by the Natural Science Foundation of Hunan Province(2022JJ20005)National Natural Science Foundation of China(22174038,21925401,and 52221001),and Tencent Foundation.
文摘Endogenous biomolecules in cells are the basis of all life activities.Directly visualizing the structural characteristics and dynamic behaviors of cellular biomolecules is signiffcant for understanding the molecular mechanisms in various biological processes.Singlemolecule localization microscopy(SMLM)can circumvent the optical diffraction limit,achieving analysis of the ffne structures and biological processes in living cells with nanoscale resolution.However,the large size of traditional imaging probes prevents SMLM from accurately locating ffne structures and densely distributed biomolecules within cells.In recent years,nucleic acid probes have emerged as potential tools to replace conventional SMLM probes by virtue of their small size and high speciffcity.In addition,due to their programmability,nucleic acid probes with different conformations can be constructed via sequence design,further extending the application of SMLM in bioanalysis.Here,we discuss the design concepts of different conformational nucleic acid probes for SMLM and summarize the application of SMLM based on nucleic acid probes in the ffeld of biomolecules.Furthermore,we provide a summary and future perspectives of the nucleic acid probe-based SMLM technology,aiming to provide guidance for the acquisition of nanoscale information about cellular biological processes.