We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within...We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window,which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler–Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.展开更多
Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are wor...Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are working using the Kerr effect. The proposed gates consisted of upper and lower wavegnides coupled through a resonator which was designed for dropping of special wavelength. The resonance wavelength was designed for 1550 nm telecom operation wavelength. We used numerical meth- ods such as plane wave expansion and finite difference time domain (FDTD) for performing our simulations and studied the optical properties of the proposed structures. Our results showed that the critical input power for triggering the gate output was lower compared to previously reported gates.展开更多
A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or swi...A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or switch-on power decreases with an increase in the nonlinear refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear refractive index was analyzed numerically. Simulation results showed that the switch-off power and switch-on power (in dBW) decreased linearly with loglo (n2) in a 100-m-length fiber ring resonator, when n2 changed from 3.2 ×10^-20 m2/W to 2.5 × 10^-17 m2/W or nearly n2 = 3.2 × 10^-20 m2/W. These mean that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by the proposed approach.展开更多
A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator...A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator. The results show that the multisoliton generation with a free spectrum range of 2.4 nm and a pulse spectral width of 0.96 nm is achieved. The memory time of 15 min and the maximum soliton output power of 5.94 dBm are noted, respectively. This means that light pulses can be trapped, i.e., stopped optically within the fiber ring resonator.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12104227)the Scientific Research Foundation of Nanjing Institute of Technology (Grant No. YKJ202021)the Guizhou Provincial Science and Technology Projects (Grant No. ZK [2022] general 035)。
文摘We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window,which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler–Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.
文摘Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are working using the Kerr effect. The proposed gates consisted of upper and lower wavegnides coupled through a resonator which was designed for dropping of special wavelength. The resonance wavelength was designed for 1550 nm telecom operation wavelength. We used numerical meth- ods such as plane wave expansion and finite difference time domain (FDTD) for performing our simulations and studied the optical properties of the proposed structures. Our results showed that the critical input power for triggering the gate output was lower compared to previously reported gates.
文摘A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or switch-on power decreases with an increase in the nonlinear refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear refractive index was analyzed numerically. Simulation results showed that the switch-off power and switch-on power (in dBW) decreased linearly with loglo (n2) in a 100-m-length fiber ring resonator, when n2 changed from 3.2 ×10^-20 m2/W to 2.5 × 10^-17 m2/W or nearly n2 = 3.2 × 10^-20 m2/W. These mean that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by the proposed approach.
文摘A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator. The results show that the multisoliton generation with a free spectrum range of 2.4 nm and a pulse spectral width of 0.96 nm is achieved. The memory time of 15 min and the maximum soliton output power of 5.94 dBm are noted, respectively. This means that light pulses can be trapped, i.e., stopped optically within the fiber ring resonator.