Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the f...Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the fundamental linear and nonlin ear signal channel limitations of the Shannon theory when there is no compensation in an optical fiber transmission system?Next-generation technologies should exceed the 100G transmis sion capability of coherent systems in order to approach the Shannon limit.Spectral efficiency first needs to be improved be fore overall transmission capability can be improved.The means to improve spectral efficiency include more complex modulation formats and channel encoding/decoding algorithms,prefiltering with multisymbol detection,optical OFDM and Ny quist WDM multicarrier technologies,and nonlinearity compen sation.With further optimization,these technologies will most likely be incorporated into beyond-100G optical transport sys tems to meet bandwidth demand.展开更多
Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs)...Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs) and Raman amplifiers concatenated as booster amplifier. The channel imbalance of the overall system changes with different sets of power launched into EDFAs. By appropriately choosing the power input to concatenated EDFAs, the output spectrum of 40 channel signal can be equalized to the most extent. The merit of benefit can be around 5.5 dB by this pre-emphasis equalization. The requirement for the gain equalizer is therefore greatly released. Then the gain imbalance of the overall system and the power imbalance of 40 channels are compared and the two almost matches, but the significant difference lies on some channels. Finally, the pump power into Raman amplifier is also optimized, and another 1.3 dB improvement of channel equaliza- tion can be further achieved.展开更多
基金supported by National High-Tech Research and Development Program of China under Grant No.2013AA010501
文摘Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the fundamental linear and nonlin ear signal channel limitations of the Shannon theory when there is no compensation in an optical fiber transmission system?Next-generation technologies should exceed the 100G transmis sion capability of coherent systems in order to approach the Shannon limit.Spectral efficiency first needs to be improved be fore overall transmission capability can be improved.The means to improve spectral efficiency include more complex modulation formats and channel encoding/decoding algorithms,prefiltering with multisymbol detection,optical OFDM and Ny quist WDM multicarrier technologies,and nonlinearity compen sation.With further optimization,these technologies will most likely be incorporated into beyond-100G optical transport sys tems to meet bandwidth demand.
基金the National Natural Science Foundation of China (60777024)
文摘Optical channel pre-emphasis equalization is experimentally researched for a 270 km 40 × 40 Gbit/s wavelength division multiplexing (WDM) transmission system with three Erbium-doped fiber amplifiers (ED- FAs) and Raman amplifiers concatenated as booster amplifier. The channel imbalance of the overall system changes with different sets of power launched into EDFAs. By appropriately choosing the power input to concatenated EDFAs, the output spectrum of 40 channel signal can be equalized to the most extent. The merit of benefit can be around 5.5 dB by this pre-emphasis equalization. The requirement for the gain equalizer is therefore greatly released. Then the gain imbalance of the overall system and the power imbalance of 40 channels are compared and the two almost matches, but the significant difference lies on some channels. Finally, the pump power into Raman amplifier is also optimized, and another 1.3 dB improvement of channel equaliza- tion can be further achieved.