yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
The present paper describes the ashing and atomization processes in silicon analysis by electrothermally atomised atomic absorption spectrometry(EAAAS) with an uncoat-ed graphite tube, a pyrolytically coated graphite ...The present paper describes the ashing and atomization processes in silicon analysis by electrothermally atomised atomic absorption spectrometry(EAAAS) with an uncoat-ed graphite tube, a pyrolytically coated graphite tube and a tungsten-coated graphitetube. The sensitivity and linear range of three graphite tubes were compared. By using optical temperature control accessory, the signals are enhanced by a factor of 2 and the germanium interferences in the determination of silicon are eliminated. The effects of time constant and carrier gas flow-rate on the determination of silicon were also tested. The sample can be directly analyzed in its aqueous solution without any pretreatment. The measurements of samples containing 0. 2 μg/mL and 0. 4 μg/mL silicon were run ten times and the variation coefficient is 4. 9% and 2.6%, respectively. The recovery tests for carboxyethyl germanium sesquioxide(Ge-132) synthesized and imported were performed, and the recoveries are 97. 0% and 110%, respectively. Keywords Carboxyethyl germanium sesquioxide, Electrothermally atomised atomic absorption spectrometry, Silicon展开更多
In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_...In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite quantum dots(QDs)glass with high sensitivity for optical temperature sensing.The relation of fluorescence intensity ratio(FIR)with the temperature was studied in the temperature range of 80-440 K.Notably,the maximum absolute temperature sensitivity(Sa)and relative temperature sensitivity(Sr)of Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite QDs glass can reach as high as 0.0315 K-1 and3.097%/K,respectively.Meanwhile,Eu^(3+)-doped CsPbCl_(2)Br_(1) QDs glass demonstrates good water resistance,excellent thermal and cold cycling stability performance,The Eu^(3+)-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.展开更多
Herein,we reported novel Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors elaborated via conventional solid-state reaction.and we further explored their properties as optical thermometer by using fluorescence intensity ratio(FIR...Herein,we reported novel Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors elaborated via conventional solid-state reaction.and we further explored their properties as optical thermometer by using fluorescence intensity ratio(FIR)method complemented by detailed analysis on crystal structure,up-conversion luminescence and energy transfer from Yb^(3+)to Er^(3+).Upon 980 nm laser excitation,Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors present525,547 and 659 nm emission bands assigned to the characteristic transitions of Er^(3+).Furthermore,Y_(4)GeO_(8):Er^(3+),Yb^(3+)samples show outstanding temperature sensing performances.To be specific,the minimal temperature resolution is 0.03 K(303 K),and the relative sensitivity of FIR can be up to 1.152%/K(303 K).Hence,Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors can be possible candidates for thermometry devices.展开更多
Er-Tm3+-Ybtri-doped BaMoOphosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversio...Er-Tm3+-Ybtri-doped BaMoOphosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared(980 nm) and ultraviolet(380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Erions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {~1 G4(a)) and ~1 G4(b))} and thermally coupled energy levels {~2 Hand 4 S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoOphosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermo metric applications.展开更多
Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the p...Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn_(0.8)Cd_(0.2)O thin films. When the thin films were pre-heated at 150 ℃, polycrystalline Zn O thin films were obtained. When the thin films were pre-heated at temperatures of 200 ℃ or higher, preferential growth of Zn O nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 e V to 3.08 e V when the pre-heating temperature increased from 150 ℃ to 300 ℃.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is...On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.展开更多
In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as...In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.展开更多
Layered rare-earth hydroxides(LREHs) draw wide research interest because of their peculiar crystal structure,rich interlayer chemistry and abundant functionality of the RE element,but are limited to the two categories...Layered rare-earth hydroxides(LREHs) draw wide research interest because of their peculiar crystal structure,rich interlayer chemistry and abundant functionality of the RE element,but are limited to the two categories of RE_(2)(OH)_(5)A·nH_(2)O(A:typical of Cl^(-)or NO_(3)^(-)) and RE_(2)(OH)_(4)SO_(4)·nH_(2)O.On the other hand,rare-earth oxysulfates(RE_(2)O_(2)SO_(4)) have attracted attention due to their properties of large-capacity oxygen storage,low-temperature magnetism and luminescence,but their preparation procedure mostly involves toxic SO_(x) gases and/or complicated procedures.In this work,RE_(2)(OH)_(2)CO_(3)SO_(4)·nH_(2)O as a new family of LREHs(RE=Gd-Lu lanthanides and Y) were produced via hydrothermal reaction,from which phase-pure RE_(2)O_(2)SO_(4) was derived via subsequent annealing at 800℃ in air without the involvement of SO_(x),The compounds were thoroughly characterized to reveal the intrinsic influence of lanthanide contraction(RE^(3+) radius) on crystal structure,thermal behavior(dehydroxylation/decarbonation/desulfurization),vibrational property and crystallite morphology.Through analyzing the photoluminescence of Eu^(3+) and Sm^(3+)in the Gd_(2)O_(2)SO_(4) typical host it is found that the 617 nm(Eu^(3+),λ_(ex)=275 nm) and 608 nm(Sm^(3+),λ_(ex)=407 nm) main emissions can retain as high as ^(7)9.6% and 85.5%of their room-temperature intensities at 423 K,with activation energies of ~0.19 and 0.21 eV for thermal quenching,respectively.Application also indicates that both the phosphors have the potential for optical temperature sensing via the fluorescence intensity ratio(FIR) technology,whose maximum relative sensitivity reaches -2.70%/K for Eu^(3+)and 1.73%/K for Sm^(3+) at 298 K.展开更多
In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the s...In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.展开更多
We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be...We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.展开更多
The authors would like to apologize for some mistakes in the letter on Chinese Optics Letters vol. 12, no. 11, page 111701 and wish to make the corrections described below:
Optical thermometry based on the upconversion(UC)luminescence intensity ratio(LIR)has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement.Compare...Optical thermometry based on the upconversion(UC)luminescence intensity ratio(LIR)has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement.Compared with traditional UC phosphors,optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals.In this study,a high-quality 5 at%Yb^(3+)and 1 at%Ho^(3+)co-doped Gd_(0.74)Y_(0.2)TaO_(4)single crystal was grown by the Czochralski(Cz)method,and the structure of the as-grown crystal was characterized.Importantly,the UC luminescent properties and optical thermometry behaviors of this crystal were revealed.Under 980 nm wavelength excitation,green and red UC luminescence lines at 550 and 650 nm and corresponding to the^(5)F_(4)/^(5)S_(2)→^(5)I_(8)and^(5)F_(5)→^(5)I_(8)transitions of Ho^(3+),respectively,were observed.The green and red UC emissions involved a two-photon mechanism,as evidenced by the analysis of power-dependent UC emission spectra.The temperature-dependent UC emission spectra were measured in the temperature range of 330–660 K to assess the optical temperature sensing behavior.At 660 K,the maximum relative sensing sensitivity(S_(r))was determined to be 0.0037 K^(−1).These results highlight the signifcant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.展开更多
Transparent and conducting Al-doped ZnO(ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature(RT) to 200 ℃. The structural,morpho...Transparent and conducting Al-doped ZnO(ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature(RT) to 200 ℃. The structural,morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), field-emission scanning electron microscopy(FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 e V as the substrate temperature is increased from RT to 200 ℃. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission(〉 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.展开更多
By using high temperature optical microscopy,oxidation behaviors of poly-and single crystalline NbSi_(2) were observed in-situ at 1023 K.The effects of micro-cracks,porosity and grain boundary on the oxidation behavio...By using high temperature optical microscopy,oxidation behaviors of poly-and single crystalline NbSi_(2) were observed in-situ at 1023 K.The effects of micro-cracks,porosity and grain boundary on the oxidation behavior of NbSi_(2) have been studied.The results indicate that new cracks initiate and extend from the pre-existing cracking areas in the arc-melted poly-crystalline specimen,leading to fragmentation after 220 min at 1023 K.However,although pores and grain boundary are the preferential oxidation site,they do not directly lead to fragmentation during oxidation,indicating that the pre-existing cracks in specimen are the key reason to pesting.The oxidation kinetics of the studied NbSi_(2) specimens corresponds well with the in-situ observation.展开更多
The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated mode...The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.展开更多
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydro...A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10^(-4) to 1×10^(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
文摘The present paper describes the ashing and atomization processes in silicon analysis by electrothermally atomised atomic absorption spectrometry(EAAAS) with an uncoat-ed graphite tube, a pyrolytically coated graphite tube and a tungsten-coated graphitetube. The sensitivity and linear range of three graphite tubes were compared. By using optical temperature control accessory, the signals are enhanced by a factor of 2 and the germanium interferences in the determination of silicon are eliminated. The effects of time constant and carrier gas flow-rate on the determination of silicon were also tested. The sample can be directly analyzed in its aqueous solution without any pretreatment. The measurements of samples containing 0. 2 μg/mL and 0. 4 μg/mL silicon were run ten times and the variation coefficient is 4. 9% and 2.6%, respectively. The recovery tests for carboxyethyl germanium sesquioxide(Ge-132) synthesized and imported were performed, and the recoveries are 97. 0% and 110%, respectively. Keywords Carboxyethyl germanium sesquioxide, Electrothermally atomised atomic absorption spectrometry, Silicon
基金Project supported by the National Natural Science Foundation of China(51872207,51672192)。
文摘In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite quantum dots(QDs)glass with high sensitivity for optical temperature sensing.The relation of fluorescence intensity ratio(FIR)with the temperature was studied in the temperature range of 80-440 K.Notably,the maximum absolute temperature sensitivity(Sa)and relative temperature sensitivity(Sr)of Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite QDs glass can reach as high as 0.0315 K-1 and3.097%/K,respectively.Meanwhile,Eu^(3+)-doped CsPbCl_(2)Br_(1) QDs glass demonstrates good water resistance,excellent thermal and cold cycling stability performance,The Eu^(3+)-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.
基金Project supported by National Natural Science Foundation of China(11974315)Guangdong Science and Technology Innovation Strategy Foundation of China(20190310)。
文摘Herein,we reported novel Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors elaborated via conventional solid-state reaction.and we further explored their properties as optical thermometer by using fluorescence intensity ratio(FIR)method complemented by detailed analysis on crystal structure,up-conversion luminescence and energy transfer from Yb^(3+)to Er^(3+).Upon 980 nm laser excitation,Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors present525,547 and 659 nm emission bands assigned to the characteristic transitions of Er^(3+).Furthermore,Y_(4)GeO_(8):Er^(3+),Yb^(3+)samples show outstanding temperature sensing performances.To be specific,the minimal temperature resolution is 0.03 K(303 K),and the relative sensitivity of FIR can be up to 1.152%/K(303 K).Hence,Y_(4)GeO_(8):Er^(3+),Yb^(3+)phosphors can be possible candidates for thermometry devices.
基金Project supported by Council of Scientific&Industrial Research(CSIR)New Delhi,India(03(1354)/16/EMR-II)
文摘Er-Tm3+-Ybtri-doped BaMoOphosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared(980 nm) and ultraviolet(380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Erions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {~1 G4(a)) and ~1 G4(b))} and thermally coupled energy levels {~2 Hand 4 S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoOphosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermo metric applications.
基金Funded by the National Natural Science Foundation of China(No.51461135004)the Doctoral Fund of Ministry of Education Priority Development Project(No.20130143130002)+1 种基金the Key Technology Innovation Project of Hubei Province(2013AAA005)the Scientific Leadership training Program of Hubei Province
文摘Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn_(0.8)Cd_(0.2)O thin films. When the thin films were pre-heated at 150 ℃, polycrystalline Zn O thin films were obtained. When the thin films were pre-heated at temperatures of 200 ℃ or higher, preferential growth of Zn O nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 e V to 3.08 e V when the pre-heating temperature increased from 150 ℃ to 300 ℃.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
文摘On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.
基金supported by the National Natural Science Foundation of China (52202001)Open Project of Advanced Laser Technology Laboratory of Anhui Province (AHL2021KF07)+1 种基金Major Science and Technology of Anhui Province(202203a05020002)University Natural Science Research Project of Anhui Province (KJ2021A0388)。
文摘In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.
基金supported in part by the National Natural Science Foundation of China (52172112,51972047)。
文摘Layered rare-earth hydroxides(LREHs) draw wide research interest because of their peculiar crystal structure,rich interlayer chemistry and abundant functionality of the RE element,but are limited to the two categories of RE_(2)(OH)_(5)A·nH_(2)O(A:typical of Cl^(-)or NO_(3)^(-)) and RE_(2)(OH)_(4)SO_(4)·nH_(2)O.On the other hand,rare-earth oxysulfates(RE_(2)O_(2)SO_(4)) have attracted attention due to their properties of large-capacity oxygen storage,low-temperature magnetism and luminescence,but their preparation procedure mostly involves toxic SO_(x) gases and/or complicated procedures.In this work,RE_(2)(OH)_(2)CO_(3)SO_(4)·nH_(2)O as a new family of LREHs(RE=Gd-Lu lanthanides and Y) were produced via hydrothermal reaction,from which phase-pure RE_(2)O_(2)SO_(4) was derived via subsequent annealing at 800℃ in air without the involvement of SO_(x),The compounds were thoroughly characterized to reveal the intrinsic influence of lanthanide contraction(RE^(3+) radius) on crystal structure,thermal behavior(dehydroxylation/decarbonation/desulfurization),vibrational property and crystallite morphology.Through analyzing the photoluminescence of Eu^(3+) and Sm^(3+)in the Gd_(2)O_(2)SO_(4) typical host it is found that the 617 nm(Eu^(3+),λ_(ex)=275 nm) and 608 nm(Sm^(3+),λ_(ex)=407 nm) main emissions can retain as high as ^(7)9.6% and 85.5%of their room-temperature intensities at 423 K,with activation energies of ~0.19 and 0.21 eV for thermal quenching,respectively.Application also indicates that both the phosphors have the potential for optical temperature sensing via the fluorescence intensity ratio(FIR) technology,whose maximum relative sensitivity reaches -2.70%/K for Eu^(3+)and 1.73%/K for Sm^(3+) at 298 K.
基金Supported by Beijing Educational Committee Foundation (Km200310005022) and (00KG040)
文摘In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.
基金supported by the National Natural Science Foundation of China(Nos.11574397,61775238,61705262,and 61705263)the Scientific Research Project of National University of Defense Technology(No.JC15-11-02)
文摘We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.
文摘The authors would like to apologize for some mistakes in the letter on Chinese Optics Letters vol. 12, no. 11, page 111701 and wish to make the corrections described below:
基金The National Natural Science Foundation of China(Grant No.52202001)Open Project of Advanced Laser Technology Laboratory of Anhui Province(No.AHL2021KF07)+3 种基金Major Science and Technology of Anhui Province(No.202203a05020002)University Natural Science Research Project of Anhui Province(No.KJ2021A0388)Natural Science Foundation of Tianjin(No.20JCYBJC00390)Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy(No.JJNY202001)supported this study.
文摘Optical thermometry based on the upconversion(UC)luminescence intensity ratio(LIR)has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement.Compared with traditional UC phosphors,optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals.In this study,a high-quality 5 at%Yb^(3+)and 1 at%Ho^(3+)co-doped Gd_(0.74)Y_(0.2)TaO_(4)single crystal was grown by the Czochralski(Cz)method,and the structure of the as-grown crystal was characterized.Importantly,the UC luminescent properties and optical thermometry behaviors of this crystal were revealed.Under 980 nm wavelength excitation,green and red UC luminescence lines at 550 and 650 nm and corresponding to the^(5)F_(4)/^(5)S_(2)→^(5)I_(8)and^(5)F_(5)→^(5)I_(8)transitions of Ho^(3+),respectively,were observed.The green and red UC emissions involved a two-photon mechanism,as evidenced by the analysis of power-dependent UC emission spectra.The temperature-dependent UC emission spectra were measured in the temperature range of 330–660 K to assess the optical temperature sensing behavior.At 660 K,the maximum relative sensing sensitivity(S_(r))was determined to be 0.0037 K^(−1).These results highlight the signifcant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.
基金the Department of Science and Technology(DST)and the Ministry of New and Renewable Energy(MNRE),Government of India for the financial supportthe University Grants Commission,New Delhi for special financial support under the UPE program
文摘Transparent and conducting Al-doped ZnO(ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature(RT) to 200 ℃. The structural,morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), field-emission scanning electron microscopy(FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 e V as the substrate temperature is increased from RT to 200 ℃. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission(〉 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50131030).
文摘By using high temperature optical microscopy,oxidation behaviors of poly-and single crystalline NbSi_(2) were observed in-situ at 1023 K.The effects of micro-cracks,porosity and grain boundary on the oxidation behavior of NbSi_(2) have been studied.The results indicate that new cracks initiate and extend from the pre-existing cracking areas in the arc-melted poly-crystalline specimen,leading to fragmentation after 220 min at 1023 K.However,although pores and grain boundary are the preferential oxidation site,they do not directly lead to fragmentation during oxidation,indicating that the pre-existing cracks in specimen are the key reason to pesting.The oxidation kinetics of the studied NbSi_(2) specimens corresponds well with the in-situ observation.
基金supported by the Special Foundation for State Major Basic Research Program of China(Grant No.2011ZX04002-101)
文摘The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.
基金supported by the National Natural Science Foundation of China(Grant Nos.11775007,and 11575013)The support from State Key Laboratory of Nuclear Physics and Technology,Peking University is appreciated
文摘A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10^(-4) to 1×10^(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.