In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defin...In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defined technique.The thermal stabilities and optical properties of the organic–inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 d B and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575076,61475061,and 61405070)the Fundamental Research Funds for the Central Universities,China(Grant No.JCKY-QKJC08)+1 种基金the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20130522151JH,20140519006JH,and 20160520091JH)the China Postdoctoral Science Foundation(Grant No.2015M571362)
文摘In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defined technique.The thermal stabilities and optical properties of the organic–inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 d B and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.