The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a...The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.展开更多
In this work, the electronic, optical, and mechanical properties of BN, AlN, and InN under the action of pressure are calculated. For each of these compounds, the energy band structure, band gaps(E^L_g, E~Γ_g, E^X_g...In this work, the electronic, optical, and mechanical properties of BN, AlN, and InN under the action of pressure are calculated. For each of these compounds, the energy band structure, band gaps(E^L_g, E~Γ_g, E^X_g), refractive index(n),dielectric constants(ε_∞, ε_0), elastic constants(C_11, C_12, C_44), and relevant parameters such as bulk(B_u), shear(S_h), and Young's(Y_0) moduli are studied, and other important parameters such as bond-stretching(α), bond-bending(β) force constant, internal-strain parameter(ζ), effective charges(e~*_T, Z~*), anisotropy factor(I_s), Poisson's ratio(P_o), Cauchy ratio(C_a), the ductility index(μ_D), and linear compressibility(C0_) are also calculated. The effects of pressure on all studied properties are investigated. Our results are in good agreement with the available experimental and theoretical data for BN,AlN, and InN.展开更多
Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti...Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging.展开更多
The emergence of lead-free halide double perovskites exhibiting bandgaps within the visible spectrum represents a substantial advancement in engineering environmentally benign perovskite solar cells.In this work,we in...The emergence of lead-free halide double perovskites exhibiting bandgaps within the visible spectrum represents a substantial advancement in engineering environmentally benign perovskite solar cells.In this work,we investigated the structural,optical,electronic,and mechanical properties of Cs-based lead-free Cs2LiGaBr6 double halide perovskites with Mn and Cr doping under hydrostatic pressure ranging from 2 to 80 GPa using density functional theory(DFT).The introduction of dopants consistently alters the lattice parameters because of the mismatch in atomic radii,whereas increasing the pressure leads to a reduction in these constants.All the studied Cs2LiGaBr6 compounds exhibited direct band gaps,which increased slightly with doping.This is attributed to the modulation of electronic states by dopant-related defect levels.The bandgap variation under pressure is primarily attributed to changes in the quantum confinement effects induced by compressive strain.Analysis of the density of states and optical properties revealed enhanced absorption in the visible spectrum for the doped compositions,and in the UV spectrum under pressure.The study of mechanical stability confirms the ductile nature of both the doped and pristine compounds under pressure,underscoring their suitability for thin film production.This study contributes to the understanding of sustainable alternatives for perovskite optoelectronic applications,emphasizing Cs2LiGaBr6’s potential under diverse conditions and dopant influences.展开更多
The structural, electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures are calculated using the density functional theory. No significant difference is observed between the calculated...The structural, electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures are calculated using the density functional theory. No significant difference is observed between the calculated optical and mechanical properties of the considered four crystal structures. The calculated results are in agree- ment with available reported experimental data. According to the calculated results, the fundamental band gap of Cu2ZnSnS4 is mainly determined by the bandwidth of the isolated conduction band. The effective-mass of carriers of Cu2ZnSnS4 are very small, especially the effective-mass of electrons on the bottom of the conduction band of zincblende-derived Cu2ZnSnS4. Using the calculated elastic constants matrix, the Born stability criteria is shown to be satisfied, and the high B/G ratio indicates that Cu2ZnSnS4 is prone to ductile behavior.展开更多
With the arrival of the intelligence era of Industry 4.0,social development has shown complex and diversified characteristics,gradually forming an innovation ecological environment constructed by vertical interaction ...With the arrival of the intelligence era of Industry 4.0,social development has shown complex and diversified characteristics,gradually forming an innovation ecological environment constructed by vertical interaction of multi-layer innovation systems and horizontal collaboration of multiple organizations and departments,which has posed extremely challenging requirements for higher engineering education to cultivate engineering talents with comprehensive engineering qualities who can solve complex engineering problems.However,practical engineering problems may involve a complex knowledge chain of interdisciplinary and multi-disciplinary cross-coupling.Therefore,higher engineering education needs to form a new interdisciplinary and multi-disciplinary integrated engineering innovation talent training system.Based on the characteristics of the mechanical and electronic engineering major,we will reshape and reconstruct the core courses of the mechanical and electronic engineering major.Two core courses are formed:Drive and Measurement and Control I and Drive and Measurement and Control II,with information flow and energy flow as the main lines,following up with the comprehensive practical curriculum system based on the unity of knowledge and practice and ability-oriented thinking,supporting teaching objectives,promoting students’individual development,and providing guidelines for relevant curriculum reforms.展开更多
The monolithic incorporation of electrical and optical components is critically important for achieving high-speed on-chip signal processing, but yet hard to satisfy the explosive growth in the demands on bandwidth an...The monolithic incorporation of electrical and optical components is critically important for achieving high-speed on-chip signal processing, but yet hard to satisfy the explosive growth in the demands on bandwidth and information density. Three-dimensional(3D) circuits, which are desirable for their improved performance in data handling, are ideal candidates to simultaneously promise high-capacity computing with improved speed and energy efficiency. In such highly integrated circuits, however, the selective electrical modulation of light signals is still difficult to achieve owing to the lack of controllable integration of microscale optical functional devices and modulation units. In this work, we demonstrate an electrically modulated microlaser module on a 3D-integrated microsystem composed of a dye-doped polymeric microcavity and an underneath microscale electrical heating circuit. The lasing mode was modulated based on electrical heating-assisted thermo-optic response of the polymeric matrices, which were further fabricated into coupled microdisks, yielding wavelength-tunable single-mode microlasers with selective electrical modulation. On this basis, a prototype of electrically controlled microlaser module with reduced signal crosstalk was achieved. The results will provide a useful enlightenment for the rational design of novel tunable optical devices with more complicated functionalities under far-field regulation, paving the way for the on-chip optoelectronic integration.展开更多
In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic pas...In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum.The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor(CMOS)process-compatible fabrication technologies,resulting in high-volume production at low cost.On the other hand,explosively growing traffic in the telecom,data center and high-performance computer demands the data flow to have high speed,wide bandwidth,low cost,and high energy-efficiency,as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks.In practical applications,silicon photonics started with optical interconnect transceivers in the data-com first,and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays(OPAs)in light detection and ranging(LiDAR).This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above.CMOS-based silicon photonic platform technologies,applications to optical transceiver in the data-com network,applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.展开更多
Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-ty...Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-type energy transfer from Ce3+ ion to Eu2+ ion and tuning the relative proportion of Ce3+/Eu2+ properly. Energy transfer mechanism in LiSrBOa:Ce3+, Eu2+ phosphor is dominated by the dipole-dipole interaction, and the critical distance of the energy transfer is estimated to be about 2 nm by both spectral overlap and concentration quenching methods. Under UV radiation, white light is generated by coupling 436 and 565nm emission bands attributed to Ce3+ and Eu2+ radiations, respectively.展开更多
The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approxima...The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approximation(LDA) and generalized gradient approximation(GGA).The calculated ground state quantities,such as lattice constant(α_0),ground state energy(E),bulk modulus(S),and their pressure derivative(B_p) are in reasonable agreement with the present analytical and previous theoretical results and available experimental data.Based on several elastic and mechanical parameters,the structural stability,hardness,stiffness and the brittle and ductile behaviors are discussed,which reveal that protactiniumbased oxide series of perovskites is mechanically stable and possesses weak resistance to shear deformation compared with resistance to unidirectional compression while flexible and covalent behaviors are dominated in them.The analysis of band profile through Trans-Blaha modified Becke-Johnson(TB-mBJ) potential highlights the underestimation of bandgap with traditional density functional theory(DFT) approximation.Specific contribution of electronic states is investigated by means of total and partial density of states and it can be evaluated that both compounds are(Γ-Γ) direct bandgap semiconductors.All fundamental optical properties are analyzed while attention is paid to absorption and reflection spectra to explore extensive absorptions and reflections of these compounds in high frequency regions.The present method represents an influential approach to calculating the whole set of elastic,mechanical,and opto-electronic parameters,which would conduce to the understanding of various physical phenomena and empower the device engineers to implement these materials in flexible opto-electronic applications.展开更多
In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the ...In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.展开更多
基金Projects(L2014051,LT2014004)supported by the Program for Scientific Technology Plan of the Educational Department of Liaoning Province,China
文摘The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.
文摘In this work, the electronic, optical, and mechanical properties of BN, AlN, and InN under the action of pressure are calculated. For each of these compounds, the energy band structure, band gaps(E^L_g, E~Γ_g, E^X_g), refractive index(n),dielectric constants(ε_∞, ε_0), elastic constants(C_11, C_12, C_44), and relevant parameters such as bulk(B_u), shear(S_h), and Young's(Y_0) moduli are studied, and other important parameters such as bond-stretching(α), bond-bending(β) force constant, internal-strain parameter(ζ), effective charges(e~*_T, Z~*), anisotropy factor(I_s), Poisson's ratio(P_o), Cauchy ratio(C_a), the ductility index(μ_D), and linear compressibility(C0_) are also calculated. The effects of pressure on all studied properties are investigated. Our results are in good agreement with the available experimental and theoretical data for BN,AlN, and InN.
文摘Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging.
文摘The emergence of lead-free halide double perovskites exhibiting bandgaps within the visible spectrum represents a substantial advancement in engineering environmentally benign perovskite solar cells.In this work,we investigated the structural,optical,electronic,and mechanical properties of Cs-based lead-free Cs2LiGaBr6 double halide perovskites with Mn and Cr doping under hydrostatic pressure ranging from 2 to 80 GPa using density functional theory(DFT).The introduction of dopants consistently alters the lattice parameters because of the mismatch in atomic radii,whereas increasing the pressure leads to a reduction in these constants.All the studied Cs2LiGaBr6 compounds exhibited direct band gaps,which increased slightly with doping.This is attributed to the modulation of electronic states by dopant-related defect levels.The bandgap variation under pressure is primarily attributed to changes in the quantum confinement effects induced by compressive strain.Analysis of the density of states and optical properties revealed enhanced absorption in the visible spectrum for the doped compositions,and in the UV spectrum under pressure.The study of mechanical stability confirms the ductile nature of both the doped and pristine compounds under pressure,underscoring their suitability for thin film production.This study contributes to the understanding of sustainable alternatives for perovskite optoelectronic applications,emphasizing Cs2LiGaBr6’s potential under diverse conditions and dopant influences.
基金supported by the National Natural Science Foundation of China(No.21263006)the Science Research Foundation of Educational Commission of Yunnan Province of China(No.2012Y542)the Introduced Talents Foundation of Kunming University of Science and Technology
文摘The structural, electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures are calculated using the density functional theory. No significant difference is observed between the calculated optical and mechanical properties of the considered four crystal structures. The calculated results are in agree- ment with available reported experimental data. According to the calculated results, the fundamental band gap of Cu2ZnSnS4 is mainly determined by the bandwidth of the isolated conduction band. The effective-mass of carriers of Cu2ZnSnS4 are very small, especially the effective-mass of electrons on the bottom of the conduction band of zincblende-derived Cu2ZnSnS4. Using the calculated elastic constants matrix, the Born stability criteria is shown to be satisfied, and the high B/G ratio indicates that Cu2ZnSnS4 is prone to ductile behavior.
文摘With the arrival of the intelligence era of Industry 4.0,social development has shown complex and diversified characteristics,gradually forming an innovation ecological environment constructed by vertical interaction of multi-layer innovation systems and horizontal collaboration of multiple organizations and departments,which has posed extremely challenging requirements for higher engineering education to cultivate engineering talents with comprehensive engineering qualities who can solve complex engineering problems.However,practical engineering problems may involve a complex knowledge chain of interdisciplinary and multi-disciplinary cross-coupling.Therefore,higher engineering education needs to form a new interdisciplinary and multi-disciplinary integrated engineering innovation talent training system.Based on the characteristics of the mechanical and electronic engineering major,we will reshape and reconstruct the core courses of the mechanical and electronic engineering major.Two core courses are formed:Drive and Measurement and Control I and Drive and Measurement and Control II,with information flow and energy flow as the main lines,following up with the comprehensive practical curriculum system based on the unity of knowledge and practice and ability-oriented thinking,supporting teaching objectives,promoting students’individual development,and providing guidelines for relevant curriculum reforms.
基金supported by the Ministry of Science and Technology of China (2017YFA0204502)the National Natural Science Foundation of China (21533013, 21790364)
文摘The monolithic incorporation of electrical and optical components is critically important for achieving high-speed on-chip signal processing, but yet hard to satisfy the explosive growth in the demands on bandwidth and information density. Three-dimensional(3D) circuits, which are desirable for their improved performance in data handling, are ideal candidates to simultaneously promise high-capacity computing with improved speed and energy efficiency. In such highly integrated circuits, however, the selective electrical modulation of light signals is still difficult to achieve owing to the lack of controllable integration of microscale optical functional devices and modulation units. In this work, we demonstrate an electrically modulated microlaser module on a 3D-integrated microsystem composed of a dye-doped polymeric microcavity and an underneath microscale electrical heating circuit. The lasing mode was modulated based on electrical heating-assisted thermo-optic response of the polymeric matrices, which were further fabricated into coupled microdisks, yielding wavelength-tunable single-mode microlasers with selective electrical modulation. On this basis, a prototype of electrically controlled microlaser module with reduced signal crosstalk was achieved. The results will provide a useful enlightenment for the rational design of novel tunable optical devices with more complicated functionalities under far-field regulation, paving the way for the on-chip optoelectronic integration.
文摘In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum.The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor(CMOS)process-compatible fabrication technologies,resulting in high-volume production at low cost.On the other hand,explosively growing traffic in the telecom,data center and high-performance computer demands the data flow to have high speed,wide bandwidth,low cost,and high energy-efficiency,as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks.In practical applications,silicon photonics started with optical interconnect transceivers in the data-com first,and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays(OPAs)in light detection and ranging(LiDAR).This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above.CMOS-based silicon photonic platform technologies,applications to optical transceiver in the data-com network,applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.
基金Supported by the National Natural Science Foundation of China under Grant No 50902042, the Natural Science Foundation of Hebei Province under Grant No E2009000209, and the Education Office Foundation of Hebei Province under Grant No 2009313.
文摘Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-type energy transfer from Ce3+ ion to Eu2+ ion and tuning the relative proportion of Ce3+/Eu2+ properly. Energy transfer mechanism in LiSrBOa:Ce3+, Eu2+ phosphor is dominated by the dipole-dipole interaction, and the critical distance of the energy transfer is estimated to be about 2 nm by both spectral overlap and concentration quenching methods. Under UV radiation, white light is generated by coupling 436 and 565nm emission bands attributed to Ce3+ and Eu2+ radiations, respectively.
文摘The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approximation(LDA) and generalized gradient approximation(GGA).The calculated ground state quantities,such as lattice constant(α_0),ground state energy(E),bulk modulus(S),and their pressure derivative(B_p) are in reasonable agreement with the present analytical and previous theoretical results and available experimental data.Based on several elastic and mechanical parameters,the structural stability,hardness,stiffness and the brittle and ductile behaviors are discussed,which reveal that protactiniumbased oxide series of perovskites is mechanically stable and possesses weak resistance to shear deformation compared with resistance to unidirectional compression while flexible and covalent behaviors are dominated in them.The analysis of band profile through Trans-Blaha modified Becke-Johnson(TB-mBJ) potential highlights the underestimation of bandgap with traditional density functional theory(DFT) approximation.Specific contribution of electronic states is investigated by means of total and partial density of states and it can be evaluated that both compounds are(Γ-Γ) direct bandgap semiconductors.All fundamental optical properties are analyzed while attention is paid to absorption and reflection spectra to explore extensive absorptions and reflections of these compounds in high frequency regions.The present method represents an influential approach to calculating the whole set of elastic,mechanical,and opto-electronic parameters,which would conduce to the understanding of various physical phenomena and empower the device engineers to implement these materials in flexible opto-electronic applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60873191, 60903152 and 60821001, the SRFDP under Grant No 200800131016, Beijing Nova Program under Grant No 2008B51, Key Project of the Ministry of Education of China under Grant No 109014, China Postdoctoral Science Foundation under Grant No 20090450018, Fujian Provincial Natural Science Foundation under Grant No 2008J0013, and the Foundation of Fujian Education Bureau under Grant No 3A08044.
文摘In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.