Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater o...Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.展开更多
This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm th...This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.展开更多
We report here an optically pumped deep UV edge emitting laser with AlGaN multiple quantum wells(MQWs)active region grown on AlN substrate by low pressure organometallic vapor phase epitaxy(LP-OMVPE)in a high-temperat...We report here an optically pumped deep UV edge emitting laser with AlGaN multiple quantum wells(MQWs)active region grown on AlN substrate by low pressure organometallic vapor phase epitaxy(LP-OMVPE)in a high-temperature reactor.The 21 period Al0.53Ga0.47N/Al0.7Ga0.3N MQWs laser structure was optically pumped using 193 nm deep UV excimer laser source.A laser peak was achieved from the cleaved facets at 280.3 nm with linewidth of 0.08 nm at room temperature with threshold power density of 320 kW/cm^2.The emission is completely TE polarized and the side mode suppression ratio(SMSR)is measured to be around 14 dB at 450 kW/cm^2.展开更多
We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.0...We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.展开更多
We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at...We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.展开更多
We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of...We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M^(2)<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.展开更多
A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an import...A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber- coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 ×10^-11 at i s and reaches 1.5 × 10^-12 at 2000s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock.展开更多
A magneto-optical trap (MOT) for cesium atoms that operates without a separate repumping laser is reported. The differences between a normal MOT and this kind of MOT have been experimentally studied. The influences of...A magneto-optical trap (MOT) for cesium atoms that operates without a separate repumping laser is reported. The differences between a normal MOT and this kind of MOT have been experimentally studied. The influences of a repumping laser on cooling and trapping cesium atoms in the MOT have been carefully investigated. The results reveal that it is the critical injection-locked state of the diode laser that makes magneto-optical trapping of cesium atoms possible without a separate repumping laser.展开更多
A novel high-energy picosecond optical parametric oscillator(OPO)was realized by placing an OPO in a secondharmonic(SH)cavity.In a proof-of-principle experiment,we demonstrated excellent burst energy of 45μJ for the ...A novel high-energy picosecond optical parametric oscillator(OPO)was realized by placing an OPO in a secondharmonic(SH)cavity.In a proof-of-principle experiment,we demonstrated excellent burst energy of 45μJ for the OPO signal at 900 nm that operates at a pulse repetition rate of 10 k Hz and a pulse width of 46.8 ps.The beam quality was measured as M_(x)^(2)=1.44 and M_(y)^(2)=1.40 in the orthogonal directions,corresponding to an average beam factor M^(2)=1.42.So far,this study is the first to investigate high-energy ps OPO synchronously pumped in a second-harmonic cavity.展开更多
A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be ...A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature v...We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.展开更多
In a Doppler-broadened ladder-type cesium atomic system (6S1/2 6P3/2-8S1/2), this paper characterizes electro- magnetically induced transparency (EIT) in two different experimental arrangements, and investigates t...In a Doppler-broadened ladder-type cesium atomic system (6S1/2 6P3/2-8S1/2), this paper characterizes electro- magnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P3/2 FI = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S1/2 F = 4-6P3/2 F^1= 5-8S1/2 F^11 = 4 transitions.展开更多
Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described a...Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.展开更多
This paper reviews our recent work on fabrication, optical characterization and lasing application of semiconductor nanowires, with brief introduction of related work from many other groups.
基金the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210593)the Foundation of Jiangsu Provincial Double Innovation Doctor Program (Grant No. 30644)+2 种基金the National Natural Science Foundation of China (Grant No. 62204127)State Key Laboratory of Luminescence and Applications (Grant No. SKLA 202104)open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education)。
文摘Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.
基金Project supported by the Creative Foundation of Wuhan National Laboratory for Optoelectronics (Grant No. Z080007)partly by the National Basic Research Program of China (973 Program)(Grant No. 61328)
文摘This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.
基金The work was supported by Defense Advanced Research Projects Agency(DARPA)under grant # HR0011-15-2-0002.The program managers are Dr.Daniel Green and Dr.Young-Kai Chen.
文摘We report here an optically pumped deep UV edge emitting laser with AlGaN multiple quantum wells(MQWs)active region grown on AlN substrate by low pressure organometallic vapor phase epitaxy(LP-OMVPE)in a high-temperature reactor.The 21 period Al0.53Ga0.47N/Al0.7Ga0.3N MQWs laser structure was optically pumped using 193 nm deep UV excimer laser source.A laser peak was achieved from the cleaved facets at 280.3 nm with linewidth of 0.08 nm at room temperature with threshold power density of 320 kW/cm^2.The emission is completely TE polarized and the side mode suppression ratio(SMSR)is measured to be around 14 dB at 450 kW/cm^2.
基金Supported by the National Natural Science Foundation of China under Grant No 51572053
文摘We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.
基金Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B090904003)the National Natural Science Foundation of China(Grant Nos.11774410 and 91850209)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16030200).
文摘We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M^(2)<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.
基金Supported by the National Fundamental Research Program of China under Grant No 2011CB921501the National Natural Science Foundation of China under Grant Nos 91336103,10934010 and 61078026
文摘A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber- coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 ×10^-11 at i s and reaches 1.5 × 10^-12 at 2000s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock.
基金the National Natural Science Foundation of China under Grant No.19704001the Doctoral Program Foundation of the Institute of Higher Education.
文摘A magneto-optical trap (MOT) for cesium atoms that operates without a separate repumping laser is reported. The differences between a normal MOT and this kind of MOT have been experimentally studied. The influences of a repumping laser on cooling and trapping cesium atoms in the MOT have been carefully investigated. The results reveal that it is the critical injection-locked state of the diode laser that makes magneto-optical trapping of cesium atoms possible without a separate repumping laser.
基金Project supported by the National Natural Science Foundation of China(Grant No.62005215)。
文摘A novel high-energy picosecond optical parametric oscillator(OPO)was realized by placing an OPO in a secondharmonic(SH)cavity.In a proof-of-principle experiment,we demonstrated excellent burst energy of 45μJ for the OPO signal at 900 nm that operates at a pulse repetition rate of 10 k Hz and a pulse width of 46.8 ps.The beam quality was measured as M_(x)^(2)=1.44 and M_(y)^(2)=1.40 in the orthogonal directions,corresponding to an average beam factor M^(2)=1.42.So far,this study is the first to investigate high-energy ps OPO synchronously pumped in a second-harmonic cavity.
基金supported by the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Municipal Primary application and Frontier Technology Research Plan,China (Grant No 07JCYBJC06200)
文摘A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921601)the National Natural Science Foundation of China(Grant Nos.11104172,11274213,61205215,and 61227902)+2 种基金the Project for Excellent Research Teams of the National Natural Science Foundation of China(Grant No.61121064)the Research Project for Returned Abroad Scholars from Universities of Shanxi Province,China(Grant No.2012-015)the Program for Science and Technology Star of Taiyuan,Shanxi,China(Grant No.12024707)
文摘We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 61078051,60978017,10974125 and 60821004)the NCET Project from the Education Ministry of China (Grant No. NCET-07-0524)the Specialized Research Fund for the Doctoral Program of China (Grant No. 20070108003)
文摘In a Doppler-broadened ladder-type cesium atomic system (6S1/2 6P3/2-8S1/2), this paper characterizes electro- magnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P3/2 FI = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S1/2 F = 4-6P3/2 F^1= 5-8S1/2 F^11 = 4 transitions.
基金supported by the National Natural Science Foundation of China (No. 60668016)the New Century Foundation for Outstanding Talents from the Ministry of Education of China (No. NCET-07-0240)
文摘Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.
文摘This paper reviews our recent work on fabrication, optical characterization and lasing application of semiconductor nanowires, with brief introduction of related work from many other groups.