The electrooxidation behavior of 3, 3′,5, 5′-tetramethylbenzidine(TMB) was investigated using a platinum minigrid optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electroo...The electrooxidation behavior of 3, 3′,5, 5′-tetramethylbenzidine(TMB) was investigated using a platinum minigrid optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electrooxidation process to yield quinonediimine in the pH range from 2.0 to < 4.0, and two consecutive one-electron electrooxidation processes, gave the mediate product free radical of TMB first, then gave the oxidation product quinonediimine in the pH range from 4.0 to < 7.0. In the pH range from 7.0 to 10.0, the electrooxidation of TMB was also one two-electron electrooxidation process to yield an azo compound. The formal potential E0'and the electron transfer number of the electrooxidation of TMB at pH 2.0 and pH 8.4 were determined by spectroelectrochemical techniques.展开更多
An in-situ optically transparent thin-layer microscopic FTIR spectroelectro- chemical cell was constructed.Using this cell,we characterize a concentration-distance profile in the electrochemical diffusion thin-layer b...An in-situ optically transparent thin-layer microscopic FTIR spectroelectro- chemical cell was constructed.Using this cell,we characterize a concentration-distance profile in the electrochemical diffusion thin-layer by in-situ adjusting the focal point at different distances to the electrode surface.展开更多
A novel design of IR OTTLE is shown to have sufficient sensitivity and experi- mental simplicity for obtaining IR spectra of the species generated during electrochemical oxidation-reduction.
The electrooxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) is dependent on the pH value of Britton-Robinson (B-R) buffer solution. In this work, the electrooxidation behavior of TMB was investigated with a SnO2:F ...The electrooxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) is dependent on the pH value of Britton-Robinson (B-R) buffer solution. In this work, the electrooxidation behavior of TMB was investigated with a SnO2:F film optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electrooxidation process in the pH range from 2.0 to < 4.0, and two successive one-electron electrooxidation processes in the pH range from 4.0 to < 7.0 in the B-R buffer solution. At pH 6.5, the electrooxidative product of TMB generated a subsequent chemical reaction to yield an azo compound. Several spectroelectrochemical techniques, such as thin-layer cyclic voltammetry, thin-layer cyclic voltabsorptometry, thin-layer potential-controlled electrolysis absorptometry, thin-layer single-potential-step chronoabsorptometry, thin-layer dou-ble-potential-step chronoabsorptometry, thin-layer single-potential-step open-circuit relaxation chronoabsorptometry, were applied to this investigation. The formal potential E0’ and the electron transfer number corresponding to the electrooxidation of TMB in B-R buffer solution, and the reaction rate constant of the subsequent chemical reaction were determined.展开更多
Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent...Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.展开更多
The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the opt...Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated展开更多
In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding ...In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.展开更多
A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the bal...A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the ballistic photons with different optical path lengths, the thickness distribution of the object is mapped, and the maximum is less than 3.6%. This time-resolved ballistic imaging has potential applications in studying properties of the liquid core in the near field of the fuel spray.展开更多
The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate throu...The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. Antennas differ by the dimensions in the ground plane mesh pattern. The opaque antenna only consists of a full copper deposit. The transparency work was mainly carried out on the ground plane as it is the largest area available. Specific attention is paid to optical transparency in the visible light spectrum, sheet resistance and electromagnetic performances in the [2.8;3 GHz] bandwidth. They are measured in each case, compared and discussed. Both simulations and measurement results show good performance, especially the antenna with the most transparent ground plane: a high level of optical transparency of almost 73%, coupled with a sheet resistance of less than 0.028 Ohms/sq and a gain of about 3.22 dBi at 2.8 GHz, slightly higher than the gain of the reference opaque antenna of about 2.66 dBi at 2.99 GHz. The opaque reference antenna has a bandwidth of 1.30 GHz while those of the transparent antennas are about 1.60 GHz and 2.10 GHz (S<sub>11</sub> < −10 dB). This solution presents a real interest for low cost integrated and discrete antenna solutions in ISM band.展开更多
Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like str...Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.展开更多
Organo-soluble alicyclic polyimides (ALPIs) were synthesized from an alicyclic dianhydride, 1,8-dimethyl-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (DMEA) and several multialkyl-substituted 4,4'-d...Organo-soluble alicyclic polyimides (ALPIs) were synthesized from an alicyclic dianhydride, 1,8-dimethyl-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (DMEA) and several multialkyl-substituted 4,4'-diaminodiphenylmethane compounds, including 3,3'-dimethyl-4,4'-diaminodiphenyt methane (DMDA), 3,31,5,5'-tetramethyl-4,4'-diaminodiphenyl methane (TMDA) and 3,3',5,5'-tetraethyl-4,4'-diaminodiphenylmethane (TEDA). For comparison, the aromatic polyimides (ARPIs) were synthesized from the aromatic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and the same diamines. The ALPIs exhibited better solubility and transparency, but worse thermal stabilities and mechanical properties than those of the ARPIs. And the ALPIs could be dissolved in common organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), chloroform, tetrahydrofuran, m-cresol and so on. The ALPI films had an UV-Vis cut-off at 320 nm and a transmittance of higher than 80% in the visible region. In addition, the ALPIs showed thermal decomposition temperatures (T-d) of about 450degreesC, which was nearly 100degreesC lower than that of the ARPIs.展开更多
Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,α-bis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides.The one-ste...Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,α-bis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides.The one-step polymerizationprocedure was conducted at 180℃ in m-cresol,producing the polyimides with inherent viscosities of 0.68-0.76 dL.g^(-1).Thepolyimides could be soluble not only in polar aprotic solvents,such as N-methyl-2-pyrrolidinone,and N,N-dimethylacetamide,but also in common organic solvents,such as chloroform,cyclopentanone,m-cresol and so on.Thepolyimide films show excellent transparency with the UV-Vis cut-off lengths of 310-360 nm and light transmittances ofhigher than 80% in the visible region.In addition,the polyimides exhibit good thermal stability with an initial decompositiontemperature(T_d)higher than 530℃ and have more than 60% of residual weight retentions at 700℃.展开更多
A visible transparent metamaterial absorber was designed and fabricated with ultrabroadband microwave absorption and low infrared emissivity to meet the increasing demand for multispectral compatible camouflage. The a...A visible transparent metamaterial absorber was designed and fabricated with ultrabroadband microwave absorption and low infrared emissivity to meet the increasing demand for multispectral compatible camouflage. The absorber was fabricated with a low-infrared emissive layer at the top, a microwave-absorbing layer in the middle, and a reflective layer at the bottom, which were separated by polymethyl methacrylate plates. The absorber showed an average visible transmittance of 55%, infrared emissivity of ~0.37, and effective microwave absorption bandwidth of 32.1 GHz with a total thickness of 3.0 mm. Furthermore,microwave absorption exhibited wide-angle stability and polarization insensitivity characteristics. The mechanism of microwave attenuation was further explored through effective electromagnetic parameters as well as surface current, electric field, magnetic field, and energy loss density distributions. The experimental results were consistent with those of the simulations and calculations, indicating the potential of the designed metamaterial absorber for future applications in multispectral compatible camouflage.展开更多
In the face of deteriorating environmental conditions in the world,water quality control is an urgent task.It can be solved by creating sensors with high accuracy and low cost,which requires the development of fundame...In the face of deteriorating environmental conditions in the world,water quality control is an urgent task.It can be solved by creating sensors with high accuracy and low cost,which requires the development of fundamentally new radiophysical methods that take advantage of the optical,microwave and millimeter wavelengths that have a significantly greater sensitivity to low concentrations of pollutants and a lower inertia.The article presents prototypes of measuring cells of the microwave and optical ranges as well as the results of an experimental study of water of various degrees of pollution with their help.The results show that the use of the highly sensitive method of capillary-waveguide resonance makes it possible to detect the presence of micro impurities in water with concentrations up to0.1%and to identify water even from sources of various natural origins.In addition,the use of measurements at several frequencies in the optical range will make it possible to solve the problem of creating water control sensors with high sensitivity to pollution and low cost.It can be concluded that the possibility of complex use of multiwave sensors(optical,infrared and microwave ranges)allows to increase the sensitivity and reliability of water quality assessment.展开更多
The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is ...The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz(THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency(EIT) will open a door to design the tunable THz devices.展开更多
Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque m...Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque materials,such as metal strips,metallic tapes,or epoxy pastes;thus,prohibiting their use in flexible and wearable devices,and simultaneously limiting their integration into existing optoelectronic systems.Here,we demonstrate that mechanically flexible and optically transparent microwave antennas with high operational efficiencies can be readily fabricated using composite nanolayers deposited on common plastic substrates.The composite nanolayer structure consists of an ultra-thin copper-doped silver film sandwiched between two dielectric films of tantalum pentoxide and aluminum oxide.The material and thickness of each constituent layer are judiciously selected such that the whole structure exhibits an experimentally measured averaged visible transmittance as high as 98.94%compared to a bare plastic substrate,and simultaneously,a sheet resistance as low as 12.5Ω/sq.Four representative types of microwave antennas are implemented:an omnidirectional dipole antenna,unidirectional Yagi-Uda antenna,low-profile patch antenna,and Fabry-Pérot cavity antenna.These devices exhibit great mechanical flexibility with bending angle over 70°,high gain of up to 13.6 dBi,and large radiation efficiency of up to 84.5%.The proposed nano-engineered composites can be easily prepared over large areas on various types of substrates and simultaneously overcome the limitations of poor mechanical flexibility,low electrical conductivity,and reduced optical transparency usually faced by other constituent materials for flexible transparent microwave antennas.The demonstrated flexible microwave antennas have various applications ranging from fifth-generation and vehicular communication systems to bio-signal monitors and wearable electronics.展开更多
Fine grained 8 mol%yttria-stabilized zirconia(8YSZ)transparent ceramics with high optical and mechanical properties were fabricated by air pre-sintering and hot isostatic pressing(HIP)using commercial 8YSZ powders as ...Fine grained 8 mol%yttria-stabilized zirconia(8YSZ)transparent ceramics with high optical and mechanical properties were fabricated by air pre-sintering and hot isostatic pressing(HIP)using commercial 8YSZ powders as the raw material.The pre-sintered ceramics with fine grains and appropriate relative density play a key role to achieve high transparency and suppressed grain size after HIP post-treatment at relatively low temperatures.With the increase of HIP temperature from 1350 to 1550℃,the in-line transmittance of 8YSZ ceramics at 600 nm increases from 56.9%to 71.5%(2.5 mm in thickness),and the average grain size increases from 2.4 to 16.3μm.The corresponding bending strength of 8YSZ transparent ceramics decreases from 328±20 to 289±19 MPa,the hardness(H)decreases from 12.9±0.1 to 12.5±0.2 GPa,and the fracture toughness(KIC)decreases from 1.30±0.02 to 1.26±0.03 MPa·m^(1/2).Systematical investigations were carried out to study the combination of high optical transparency and excellent mechanical properties in 8YSZ ceramics.展开更多
A novel scalable and integrated design that supports optical multicast and burst amplification is proposed and demonstrated experimentally. The powers of incoming signals can be tuned to optimize the results of burst ...A novel scalable and integrated design that supports optical multicast and burst amplification is proposed and demonstrated experimentally. The powers of incoming signals can be tuned to optimize the results of burst amplification and replication. Experimental results also show that erbium-doped optical Fiber amplication (EDFA) transients can be suppressed to an equally low level regardless of the burst parameters. Extended structure designs are further proposed to satisfy the need of mass replication of multicast signals.展开更多
In this study,the optical properties of transparent bioplastics have been investigated.The long-term technological goal is to establish biopolymers in a new market segment for demanding optical applications and to con...In this study,the optical properties of transparent bioplastics have been investigated.The long-term technological goal is to establish biopolymers in a new market segment for demanding optical applications and to contribute to a more sustainable economy.A collection of transparent bioplastics has been tested with respect to the long-term stability and the possibility of an application in optical components for LED lighting.The focus of materials testing was on the influence of short wavelength visible radiation as well as thermal loads.The results show,that some materials may be candidates for subsequent feasibility studies.To the best of our knowledge,the application of such polymers in complex technical products and in particular in luminaires has not yet been realized.The use of bio-based plastics for optical components therefore represents a novelty and has a high development potential.展开更多
基金The project was supported by the National Natural Science Foundation of China(Grant No.20075013).
文摘The electrooxidation behavior of 3, 3′,5, 5′-tetramethylbenzidine(TMB) was investigated using a platinum minigrid optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electrooxidation process to yield quinonediimine in the pH range from 2.0 to < 4.0, and two consecutive one-electron electrooxidation processes, gave the mediate product free radical of TMB first, then gave the oxidation product quinonediimine in the pH range from 4.0 to < 7.0. In the pH range from 7.0 to 10.0, the electrooxidation of TMB was also one two-electron electrooxidation process to yield an azo compound. The formal potential E0'and the electron transfer number of the electrooxidation of TMB at pH 2.0 and pH 8.4 were determined by spectroelectrochemical techniques.
文摘An in-situ optically transparent thin-layer microscopic FTIR spectroelectro- chemical cell was constructed.Using this cell,we characterize a concentration-distance profile in the electrochemical diffusion thin-layer by in-situ adjusting the focal point at different distances to the electrode surface.
文摘A novel design of IR OTTLE is shown to have sufficient sensitivity and experi- mental simplicity for obtaining IR spectra of the species generated during electrochemical oxidation-reduction.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20075013).
文摘The electrooxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) is dependent on the pH value of Britton-Robinson (B-R) buffer solution. In this work, the electrooxidation behavior of TMB was investigated with a SnO2:F film optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electrooxidation process in the pH range from 2.0 to < 4.0, and two successive one-electron electrooxidation processes in the pH range from 4.0 to < 7.0 in the B-R buffer solution. At pH 6.5, the electrooxidative product of TMB generated a subsequent chemical reaction to yield an azo compound. Several spectroelectrochemical techniques, such as thin-layer cyclic voltammetry, thin-layer cyclic voltabsorptometry, thin-layer potential-controlled electrolysis absorptometry, thin-layer single-potential-step chronoabsorptometry, thin-layer dou-ble-potential-step chronoabsorptometry, thin-layer single-potential-step open-circuit relaxation chronoabsorptometry, were applied to this investigation. The formal potential E0’ and the electron transfer number corresponding to the electrooxidation of TMB in B-R buffer solution, and the reaction rate constant of the subsequent chemical reaction were determined.
基金support from the National Natural Science Foundation of China(61975046)。
文摘Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
文摘Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated
基金Project supported by the International Science&Technology Cooperation Program of China(Grant No.2014DFR10020)the Science Foundation of Shanxi Province,China(Grant Nos.201701D121050 and 201701D121007)
文摘In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61427816 and 61690221the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the ballistic photons with different optical path lengths, the thickness distribution of the object is mapped, and the maximum is less than 3.6%. This time-resolved ballistic imaging has potential applications in studying properties of the liquid core in the near field of the fuel spray.
文摘The performances of two microstrip patch antennas with low visual impact are presented in this paper and compared to an opaque solution. These consist in a copper film deposited on a Borofloat 33 glass substrate through a thin titanium gripping layer. The mesh is obtained by wet chemical etching. Antennas differ by the dimensions in the ground plane mesh pattern. The opaque antenna only consists of a full copper deposit. The transparency work was mainly carried out on the ground plane as it is the largest area available. Specific attention is paid to optical transparency in the visible light spectrum, sheet resistance and electromagnetic performances in the [2.8;3 GHz] bandwidth. They are measured in each case, compared and discussed. Both simulations and measurement results show good performance, especially the antenna with the most transparent ground plane: a high level of optical transparency of almost 73%, coupled with a sheet resistance of less than 0.028 Ohms/sq and a gain of about 3.22 dBi at 2.8 GHz, slightly higher than the gain of the reference opaque antenna of about 2.66 dBi at 2.99 GHz. The opaque reference antenna has a bandwidth of 1.30 GHz while those of the transparent antennas are about 1.60 GHz and 2.10 GHz (S<sub>11</sub> < −10 dB). This solution presents a real interest for low cost integrated and discrete antenna solutions in ISM band.
基金Supported by the Research Fund of the International Science & Technology Cooperation Program of China(No.2011DFA52650) and Project 111(B13035)
文摘Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.
基金This work was supported by the National Natural Science Foundation of China under the Grant for Distinguished YoungScholars (No. 59925310).
文摘Organo-soluble alicyclic polyimides (ALPIs) were synthesized from an alicyclic dianhydride, 1,8-dimethyl-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (DMEA) and several multialkyl-substituted 4,4'-diaminodiphenylmethane compounds, including 3,3'-dimethyl-4,4'-diaminodiphenyt methane (DMDA), 3,31,5,5'-tetramethyl-4,4'-diaminodiphenyl methane (TMDA) and 3,3',5,5'-tetraethyl-4,4'-diaminodiphenylmethane (TEDA). For comparison, the aromatic polyimides (ARPIs) were synthesized from the aromatic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and the same diamines. The ALPIs exhibited better solubility and transparency, but worse thermal stabilities and mechanical properties than those of the ARPIs. And the ALPIs could be dissolved in common organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), chloroform, tetrahydrofuran, m-cresol and so on. The ALPI films had an UV-Vis cut-off at 320 nm and a transmittance of higher than 80% in the visible region. In addition, the ALPIs showed thermal decomposition temperatures (T-d) of about 450degreesC, which was nearly 100degreesC lower than that of the ARPIs.
基金This work was supported by the National Natural Science Foundation of China(NSFC)for distinguished Young Scholars(No.59925310).
文摘Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,α-bis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides.The one-step polymerizationprocedure was conducted at 180℃ in m-cresol,producing the polyimides with inherent viscosities of 0.68-0.76 dL.g^(-1).Thepolyimides could be soluble not only in polar aprotic solvents,such as N-methyl-2-pyrrolidinone,and N,N-dimethylacetamide,but also in common organic solvents,such as chloroform,cyclopentanone,m-cresol and so on.Thepolyimide films show excellent transparency with the UV-Vis cut-off lengths of 310-360 nm and light transmittances ofhigher than 80% in the visible region.In addition,the polyimides exhibit good thermal stability with an initial decompositiontemperature(T_d)higher than 530℃ and have more than 60% of residual weight retentions at 700℃.
文摘A visible transparent metamaterial absorber was designed and fabricated with ultrabroadband microwave absorption and low infrared emissivity to meet the increasing demand for multispectral compatible camouflage. The absorber was fabricated with a low-infrared emissive layer at the top, a microwave-absorbing layer in the middle, and a reflective layer at the bottom, which were separated by polymethyl methacrylate plates. The absorber showed an average visible transmittance of 55%, infrared emissivity of ~0.37, and effective microwave absorption bandwidth of 32.1 GHz with a total thickness of 3.0 mm. Furthermore,microwave absorption exhibited wide-angle stability and polarization insensitivity characteristics. The mechanism of microwave attenuation was further explored through effective electromagnetic parameters as well as surface current, electric field, magnetic field, and energy loss density distributions. The experimental results were consistent with those of the simulations and calculations, indicating the potential of the designed metamaterial absorber for future applications in multispectral compatible camouflage.
文摘In the face of deteriorating environmental conditions in the world,water quality control is an urgent task.It can be solved by creating sensors with high accuracy and low cost,which requires the development of fundamentally new radiophysical methods that take advantage of the optical,microwave and millimeter wavelengths that have a significantly greater sensitivity to low concentrations of pollutants and a lower inertia.The article presents prototypes of measuring cells of the microwave and optical ranges as well as the results of an experimental study of water of various degrees of pollution with their help.The results show that the use of the highly sensitive method of capillary-waveguide resonance makes it possible to detect the presence of micro impurities in water with concentrations up to0.1%and to identify water even from sources of various natural origins.In addition,the use of measurements at several frequencies in the optical range will make it possible to solve the problem of creating water control sensors with high sensitivity to pollution and low cost.It can be concluded that the possibility of complex use of multiwave sensors(optical,infrared and microwave ranges)allows to increase the sensitivity and reliability of water quality assessment.
基金supported by the National Program on Key Basic Research Project of China under Grant No.2014CB339806Basic Research Key Project under Grant No.12JC1407100+1 种基金Major National Development Project of Scientific Instrument and Equipment under Grant No.2011YQ150021 and No.2012YQ14000504the National Natural Science Foundation of China under Grant No.11174207,No.61138001,No.61205094,and No.61307126
文摘The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz(THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency(EIT) will open a door to design the tunable THz devices.
文摘Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque materials,such as metal strips,metallic tapes,or epoxy pastes;thus,prohibiting their use in flexible and wearable devices,and simultaneously limiting their integration into existing optoelectronic systems.Here,we demonstrate that mechanically flexible and optically transparent microwave antennas with high operational efficiencies can be readily fabricated using composite nanolayers deposited on common plastic substrates.The composite nanolayer structure consists of an ultra-thin copper-doped silver film sandwiched between two dielectric films of tantalum pentoxide and aluminum oxide.The material and thickness of each constituent layer are judiciously selected such that the whole structure exhibits an experimentally measured averaged visible transmittance as high as 98.94%compared to a bare plastic substrate,and simultaneously,a sheet resistance as low as 12.5Ω/sq.Four representative types of microwave antennas are implemented:an omnidirectional dipole antenna,unidirectional Yagi-Uda antenna,low-profile patch antenna,and Fabry-Pérot cavity antenna.These devices exhibit great mechanical flexibility with bending angle over 70°,high gain of up to 13.6 dBi,and large radiation efficiency of up to 84.5%.The proposed nano-engineered composites can be easily prepared over large areas on various types of substrates and simultaneously overcome the limitations of poor mechanical flexibility,low electrical conductivity,and reduced optical transparency usually faced by other constituent materials for flexible transparent microwave antennas.The demonstrated flexible microwave antennas have various applications ranging from fifth-generation and vehicular communication systems to bio-signal monitors and wearable electronics.
基金This work was supported by the National Key R&D Program of China(Grant No.2021YFE0104800)the Key Research Project of Frontier Science of Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC022).
文摘Fine grained 8 mol%yttria-stabilized zirconia(8YSZ)transparent ceramics with high optical and mechanical properties were fabricated by air pre-sintering and hot isostatic pressing(HIP)using commercial 8YSZ powders as the raw material.The pre-sintered ceramics with fine grains and appropriate relative density play a key role to achieve high transparency and suppressed grain size after HIP post-treatment at relatively low temperatures.With the increase of HIP temperature from 1350 to 1550℃,the in-line transmittance of 8YSZ ceramics at 600 nm increases from 56.9%to 71.5%(2.5 mm in thickness),and the average grain size increases from 2.4 to 16.3μm.The corresponding bending strength of 8YSZ transparent ceramics decreases from 328±20 to 289±19 MPa,the hardness(H)decreases from 12.9±0.1 to 12.5±0.2 GPa,and the fracture toughness(KIC)decreases from 1.30±0.02 to 1.26±0.03 MPa·m^(1/2).Systematical investigations were carried out to study the combination of high optical transparency and excellent mechanical properties in 8YSZ ceramics.
基金supported by the National "863" Program of China(No.2009AA01Z256)the National Natural Science Foundation of China(Nos. 60736036,61006041,and 61001121)
文摘A novel scalable and integrated design that supports optical multicast and burst amplification is proposed and demonstrated experimentally. The powers of incoming signals can be tuned to optimize the results of burst amplification and replication. Experimental results also show that erbium-doped optical Fiber amplication (EDFA) transients can be suppressed to an equally low level regardless of the burst parameters. Extended structure designs are further proposed to satisfy the need of mass replication of multicast signals.
基金This research was part of the BMBF funded project NAROK(project grant 031B062)。
文摘In this study,the optical properties of transparent bioplastics have been investigated.The long-term technological goal is to establish biopolymers in a new market segment for demanding optical applications and to contribute to a more sustainable economy.A collection of transparent bioplastics has been tested with respect to the long-term stability and the possibility of an application in optical components for LED lighting.The focus of materials testing was on the influence of short wavelength visible radiation as well as thermal loads.The results show,that some materials may be candidates for subsequent feasibility studies.To the best of our knowledge,the application of such polymers in complex technical products and in particular in luminaires has not yet been realized.The use of bio-based plastics for optical components therefore represents a novelty and has a high development potential.