This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
In this article, the authors consider the nonlinear elliptic systems under the natural growth condition. They use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, bas...In this article, the authors consider the nonlinear elliptic systems under the natural growth condition. They use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. And directly establish the optimal Holder exponent for the derivative of a weak solution.展开更多
An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. Fr...An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.展开更多
Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS)...Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained. Compared to the famous Teh chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error. Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal con...In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal control problem is impossible to be obtained, estimating the state dynamics is currently required. Here, it is assumed that the output can be measured from the real plant process. In our approach, the state mean propagation is applied in order to construct a linear model-based optimal control problem, where the model output is measureable. On this basis, an output error, which takes into account the differences between the real output and the model output, is defined. Then, this output error is minimized by applying the stochastic approximation approach. During the computation procedure, the stochastic gradient is established, so as the optimal solution of the model used can be updated iteratively. Once the convergence is achieved, the iterative solution approximates to the true optimal solution of the original optimal control problem, in spite of model-reality differences. For illustration, an example on a continuous stirred-tank reactor problem is studied, and the result obtained shows the applicability of the approach proposed. Hence, the efficiency of the approach proposed is highly recommended.展开更多
There are such problems as convergence and stability of numerical calculations during multivariate interpolation. Moreover, it is very difficult to construct a overall multivariate numerical interpolation formula to e...There are such problems as convergence and stability of numerical calculations during multivariate interpolation. Moreover, it is very difficult to construct a overall multivariate numerical interpolation formula to ensure convergence for a set of irregular nodes. In this paper by means of an optimal binary interpolation formula given in a reproducing kernel space, a high precision overall two dimension numerical integral formula is established and its advantage is that it ensures the convergence for arbitrary irregular node set in the integral domain.展开更多
In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformat...In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.展开更多
The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward c...The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward continues the source and the receiver wavefields simultaneously. The mixed domain algorithm with forward Fourier and inverse Fourier transform is used to construct the double square root equation wavefield extrapolation operator. This operator separates variables in the wave number domain and variables in the space domain. The phase operation is implemented in the wave number domain, whereas the time delay for lateral velocity variation is corrected in the space domain. The migration algorithm is efficient since the seismic data are not computed shot by shot. The data set test of the Marmousi model indicates that the offset-domain migration provides a satisfied seismic migration section on which complex geologic structures are imaged in media with large and rapid lateral velocity variations.展开更多
An accurate and wide-angle one-way propagator for wavefield extrapolation is an important topic for research on wave-equation prestack depth migration in the presence of large and rapid velocity variations. Based on t...An accurate and wide-angle one-way propagator for wavefield extrapolation is an important topic for research on wave-equation prestack depth migration in the presence of large and rapid velocity variations. Based on the optimal separable approximation presented in this paper, the mixed domain algorithm with forward and inverse Fourier transforms is used to construct the 3D one-way wavefield extrapolation operator. This operator separates variables in the wavenumber and spatial domains. The phase shift operation is implemented in the wavenumber domain while the time delay for lateral velocity variation is corrected in the spatial domain. The impulse responses of the one-way wave operator show that the numeric computation is consistent with the theoretical value for each velocity, revealing that the operator constructed with the optimal separable approximation can be applied to lateral velocity variations for the case of small steps. Imaging results of the SEG/EAGE model and field data indicate that the new method can be used to image complex structure.展开更多
A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular val...A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.展开更多
A method of approaching to the infinite dimensional linear operators by the finite dimensional operators is discussed. It is shown that,for every infinite dimensional operator A and every natural number n, there exist...A method of approaching to the infinite dimensional linear operators by the finite dimensional operators is discussed. It is shown that,for every infinite dimensional operator A and every natural number n, there exists an n dimensional optimal approximation to A. The norm error is found and the necessary and sufficient condition for such n dimensional optimal approximations to be unique is obtained.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
Aimed at infinite horizon optimal control problems of discrete time-varying nonlinear systems,in this paper,a new iterative adaptive dynamic programming algorithm,which is the discrete-time time-varying policy iterati...Aimed at infinite horizon optimal control problems of discrete time-varying nonlinear systems,in this paper,a new iterative adaptive dynamic programming algorithm,which is the discrete-time time-varying policy iteration(DTTV)algorithm,is developed.The iterative control law is designed to update the iterative value function which approximates the index function of optimal performance.The admissibility of the iterative control law is analyzed.The results show that the iterative value function is non-increasingly convergent to the Bellman-equation optimal solution.To implement the algorithm,neural networks are employed and a new implementation structure is established,which avoids solving the generalized Bellman equation in each iteration.Finally,the optimal control laws for torsional pendulum and inverted pendulum systems are obtained by using the DTTV policy iteration algorithm,where the mass and pendulum bar length are permitted to be time-varying parameters.The effectiveness of the developed method is illustrated by numerical results and comparisons.展开更多
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results...The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.展开更多
A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In th...A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method.展开更多
Neighboring optimal guidance,a method to obtain a suboptimal guidance law by approximately solving the first-order necessary conditions based on a nominal trajectory,is widely used in the aerospace field due to its hi...Neighboring optimal guidance,a method to obtain a suboptimal guidance law by approximately solving the first-order necessary conditions based on a nominal trajectory,is widely used in the aerospace field due to its high computational efficiency and low resource usage.For more advanced scenarios,the existing methods still have a problem that the guidance accuracy and optimality will seriously degrade when the actual state largely deviates from the nominal trajectory.This is mainly caused by the approximate description of the first-order conditions in terms of total flight time and nonlinear constraints.To address this problem,a higher-order neighboring optimal guidance method is proposed.First,a novel total flight time updating strategy,together with a normalized time scale,is presented that transforms the optimal problem with free total flight time into a more tractable optimal problem with fixed total flight time.Then,using the vector partial derivative method,a higher-order approximation is adopted,instead of the first-order approximation,to accurately describe the nonlinear dynamical and terminal constraints,thus obtaining a polynomially constrained quadratic optimal problem.Finally,to numerically solve the polynomially constrained quadratic optimal problem,a Newton-type iterative algorithm based on the orthogonal decomposition is designed.Through the iterative solution within each guidance period,the corrections to control quantities and total flight time are generated.The proposed method is applied to a launch vehicle orbital injection problem,and simulation results show that it achieves high accuracy of orbital injection and optimality of performance index.展开更多
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
基金Supported by NSF of China(10531020)the Program of 985 Innovation Engieering on Information in Xiamen University(2004-2007).
文摘In this article, the authors consider the nonlinear elliptic systems under the natural growth condition. They use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. And directly establish the optimal Holder exponent for the derivative of a weak solution.
基金sponsored by the National Natural Science Foundation of China (Nos. 40774069 and 40974074)the State Key Program of National Natural Science of China (No. 40830424)the National 973program (No. 007209603)
文摘An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.
文摘Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained. Compared to the famous Teh chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error. Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
文摘In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal control problem is impossible to be obtained, estimating the state dynamics is currently required. Here, it is assumed that the output can be measured from the real plant process. In our approach, the state mean propagation is applied in order to construct a linear model-based optimal control problem, where the model output is measureable. On this basis, an output error, which takes into account the differences between the real output and the model output, is defined. Then, this output error is minimized by applying the stochastic approximation approach. During the computation procedure, the stochastic gradient is established, so as the optimal solution of the model used can be updated iteratively. Once the convergence is achieved, the iterative solution approximates to the true optimal solution of the original optimal control problem, in spite of model-reality differences. For illustration, an example on a continuous stirred-tank reactor problem is studied, and the result obtained shows the applicability of the approach proposed. Hence, the efficiency of the approach proposed is highly recommended.
文摘There are such problems as convergence and stability of numerical calculations during multivariate interpolation. Moreover, it is very difficult to construct a overall multivariate numerical interpolation formula to ensure convergence for a set of irregular nodes. In this paper by means of an optimal binary interpolation formula given in a reproducing kernel space, a high precision overall two dimension numerical integral formula is established and its advantage is that it ensures the convergence for arbitrary irregular node set in the integral domain.
基金supported by the Open Research Project from SKLMCCS (Grant No. 20120106)the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-13-018A)+1 种基金the Postdoctoral Science Foundation of China (Grant No. 2013M530527)the National Natural Science Foundation of China (Grant Nos. 61304079, 61125306, and 61034002)
文摘In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.
基金This paper is supported by the National Natural Science Foundation of China (No. 40474047)State Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200654)the Focused Subject Program of Beijing (No. XK104910598).
文摘The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward continues the source and the receiver wavefields simultaneously. The mixed domain algorithm with forward Fourier and inverse Fourier transform is used to construct the double square root equation wavefield extrapolation operator. This operator separates variables in the wave number domain and variables in the space domain. The phase operation is implemented in the wave number domain, whereas the time delay for lateral velocity variation is corrected in the space domain. The migration algorithm is efficient since the seismic data are not computed shot by shot. The data set test of the Marmousi model indicates that the offset-domain migration provides a satisfied seismic migration section on which complex geologic structures are imaged in media with large and rapid lateral velocity variations.
基金This research is sponsored by China National Natural Science Foundation (N0. 40474047).
文摘An accurate and wide-angle one-way propagator for wavefield extrapolation is an important topic for research on wave-equation prestack depth migration in the presence of large and rapid velocity variations. Based on the optimal separable approximation presented in this paper, the mixed domain algorithm with forward and inverse Fourier transforms is used to construct the 3D one-way wavefield extrapolation operator. This operator separates variables in the wavenumber and spatial domains. The phase shift operation is implemented in the wavenumber domain while the time delay for lateral velocity variation is corrected in the spatial domain. The impulse responses of the one-way wave operator show that the numeric computation is consistent with the theoretical value for each velocity, revealing that the operator constructed with the optimal separable approximation can be applied to lateral velocity variations for the case of small steps. Imaging results of the SEG/EAGE model and field data indicate that the new method can be used to image complex structure.
文摘A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.
文摘A method of approaching to the infinite dimensional linear operators by the finite dimensional operators is discussed. It is shown that,for every infinite dimensional operator A and every natural number n, there exists an n dimensional optimal approximation to A. The norm error is found and the necessary and sufficient condition for such n dimensional optimal approximations to be unique is obtained.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金supported in part by Fundamental Research Funds for the Central Universities(2022JBZX024)in part by the National Natural Science Foundation of China(61872037,61273167)。
文摘Aimed at infinite horizon optimal control problems of discrete time-varying nonlinear systems,in this paper,a new iterative adaptive dynamic programming algorithm,which is the discrete-time time-varying policy iteration(DTTV)algorithm,is developed.The iterative control law is designed to update the iterative value function which approximates the index function of optimal performance.The admissibility of the iterative control law is analyzed.The results show that the iterative value function is non-increasingly convergent to the Bellman-equation optimal solution.To implement the algorithm,neural networks are employed and a new implementation structure is established,which avoids solving the generalized Bellman equation in each iteration.Finally,the optimal control laws for torsional pendulum and inverted pendulum systems are obtained by using the DTTV policy iteration algorithm,where the mass and pendulum bar length are permitted to be time-varying parameters.The effectiveness of the developed method is illustrated by numerical results and comparisons.
基金the National Nature Science Foundation of China (60775047, 60402024)
文摘The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.
基金supported by the National Natural Science Foundation of China (10872030)
文摘A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method.
基金This study was co-supported by the National Natural Science Foundation of China(No.62103014).
文摘Neighboring optimal guidance,a method to obtain a suboptimal guidance law by approximately solving the first-order necessary conditions based on a nominal trajectory,is widely used in the aerospace field due to its high computational efficiency and low resource usage.For more advanced scenarios,the existing methods still have a problem that the guidance accuracy and optimality will seriously degrade when the actual state largely deviates from the nominal trajectory.This is mainly caused by the approximate description of the first-order conditions in terms of total flight time and nonlinear constraints.To address this problem,a higher-order neighboring optimal guidance method is proposed.First,a novel total flight time updating strategy,together with a normalized time scale,is presented that transforms the optimal problem with free total flight time into a more tractable optimal problem with fixed total flight time.Then,using the vector partial derivative method,a higher-order approximation is adopted,instead of the first-order approximation,to accurately describe the nonlinear dynamical and terminal constraints,thus obtaining a polynomially constrained quadratic optimal problem.Finally,to numerically solve the polynomially constrained quadratic optimal problem,a Newton-type iterative algorithm based on the orthogonal decomposition is designed.Through the iterative solution within each guidance period,the corrections to control quantities and total flight time are generated.The proposed method is applied to a launch vehicle orbital injection problem,and simulation results show that it achieves high accuracy of orbital injection and optimality of performance index.