The least-square solutions of inverse problem for anti-symmetric and skew-symmetric matrices are studied. In addition, the problem of using anti-symmetric and skew-symmetric matrices to construct the optimal approxima...The least-square solutions of inverse problem for anti-symmetric and skew-symmetric matrices are studied. In addition, the problem of using anti-symmetric and skew-symmetric matrices to construct the optimal approximation to a given matrix is discussed, the necessary and sufficient conditions for the problem are derived, and the expression of the solution is provided. A numerical example is given to show the effectiveness of the proposed method.展开更多
Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necess...Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX=B.In addition,we also obtain the expression for the solution of a relevant optimal approximate problem.展开更多
In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solution are considered. Based on the special properties of eigenvalue and the special relations of lef...In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solution are considered. Based on the special properties of eigenvalue and the special relations of left and right eigenpairs for orthogonal matrices, we find the equivalent problem, and derive the necessary and sufficient conditions for the solvability of the problem and its general solutions. With the properties of continuous function in bounded closed set, the optimal approximate solution is obtained. In addition, an algorithm to obtain the optimal approximation and numerical example are provided.展开更多
In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the ...In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results.展开更多
文摘The least-square solutions of inverse problem for anti-symmetric and skew-symmetric matrices are studied. In addition, the problem of using anti-symmetric and skew-symmetric matrices to construct the optimal approximation to a given matrix is discussed, the necessary and sufficient conditions for the problem are derived, and the expression of the solution is provided. A numerical example is given to show the effectiveness of the proposed method.
基金This research was supported by the NSF of China under grant number 10571047.
文摘Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX=B.In addition,we also obtain the expression for the solution of a relevant optimal approximate problem.
文摘In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solution are considered. Based on the special properties of eigenvalue and the special relations of left and right eigenpairs for orthogonal matrices, we find the equivalent problem, and derive the necessary and sufficient conditions for the solvability of the problem and its general solutions. With the properties of continuous function in bounded closed set, the optimal approximate solution is obtained. In addition, an algorithm to obtain the optimal approximation and numerical example are provided.
基金Supported by the Key Discipline Construction Project of Tianshui Normal University
文摘In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results.