The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is fo...The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach.展开更多
A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular val...A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.展开更多
To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transfo...To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transformations associated with the robot hand and the camera, respectively, this paper introduces a new linear decomposition algorithm which consists of singular value decomposition followed by the estimation of the optimal rotation matrix and the least squares equation to solve the rotation matrix of X. Without the requirements of traditional methods that A and B be rigid transformations with the same rotation angle, it enables the extension to non-rigid transformations for A and B. The details of our method are given, together with a short discussion of experimental results, showing that more precision and robustness can be achieved.展开更多
Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of the...Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD to the reconstructed data. However, the two-step procedure can be inefficient and does not make reliable decomposition. In this paper, we formulate an incomplete HOSVD problem and combine the two steps into solving a single optimization problem, which simultaneously achieves imputation of missing values and also tensor decomposition. We also present one algorithm for solving the problem based on block coordinate update (BCU). Global convergence of the algorithm is shown under mild assumptions and implies that of the popular higher-order orthogonality iteration (HOOI) method, and thus we, for the first time, give global convergence of HOOI. In addition, we compare the proposed method to state-of-the-art ones for solving incom- plete HOSVD and also low-rank tensor completion problems and demonstrate the superior performance of our method over other compared ones. Furthermore, we apply it to face recognition and MRI image reconstruction to show its practical performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12261026,11961012,12201149)by the Natural Science Foundation of Guangxi Province(Grant Nos.2016GXNSFAA380074,2023GXNSFAA026067)+4 种基金by the Innovation Project of GUET Graduate Education(Grant No.2022YXW01)by the GUET Graduate Innovation Project(Grant No.2022YCXS142)by the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Grant Nos.YQ23103,YQ21103,YQ22106)by the Special Fund for Science and Technological Bases and Talents of Guangxi(Grant No.2021AC06001)by the Guizhou Science and Technology Program of Projects(Grant No.ZK2021G339)。
文摘The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach.
文摘A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.
基金Project (No. 60703002) supported by the National Natural Science Foundation of China
文摘To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transformations associated with the robot hand and the camera, respectively, this paper introduces a new linear decomposition algorithm which consists of singular value decomposition followed by the estimation of the optimal rotation matrix and the least squares equation to solve the rotation matrix of X. Without the requirements of traditional methods that A and B be rigid transformations with the same rotation angle, it enables the extension to non-rigid transformations for A and B. The details of our method are given, together with a short discussion of experimental results, showing that more precision and robustness can be achieved.
文摘Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD to the reconstructed data. However, the two-step procedure can be inefficient and does not make reliable decomposition. In this paper, we formulate an incomplete HOSVD problem and combine the two steps into solving a single optimization problem, which simultaneously achieves imputation of missing values and also tensor decomposition. We also present one algorithm for solving the problem based on block coordinate update (BCU). Global convergence of the algorithm is shown under mild assumptions and implies that of the popular higher-order orthogonality iteration (HOOI) method, and thus we, for the first time, give global convergence of HOOI. In addition, we compare the proposed method to state-of-the-art ones for solving incom- plete HOSVD and also low-rank tensor completion problems and demonstrate the superior performance of our method over other compared ones. Furthermore, we apply it to face recognition and MRI image reconstruction to show its practical performance.