The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set betwee...The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.展开更多
As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weigh...As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.展开更多
A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point....A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point. It uses the objective function itself, not derivative or any other additional information and guarantees the fast convergence toward the global optimum. This method avoids some weak points in genetic algorithm, such as inefficient to some local searching problems and its convergence is too early. Based on this model, an optimal design support system (IGBODS) is developed.IGBODS has been used in practice and the result shows that this model has great advantage than traditional one and promises good application in optimal design.展开更多
A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximatio...A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.展开更多
To solve the combinatorial optimization problem of outer layout and inner connection integrated schemes in the design of hydraulic manifold blocks ( HMB), a hybrid genetic simulated annealing algo- rithm based on ni...To solve the combinatorial optimization problem of outer layout and inner connection integrated schemes in the design of hydraulic manifold blocks ( HMB), a hybrid genetic simulated annealing algo- rithm based on niche technology is presented. This hybrid algorithm, which combines genetic algorithm, simulated annealing algorithm and niche technology, has a strong capability in global and local search, and all extrema can be found in a short time without strict requests for preferences. For the complex restricted solid spatial layout problems in HMB, the optimizing mathematical model is presented. The key technologies in the integrated layout and connection design of HMB, including the realization of coding, annealing operation and genetic operation, are discussed. The framework of HMB optimal design system based on hybrid optimization strategy is proposed. An example is given to testify the effectiveness and feasibility of the algorithm.展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the ...The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.展开更多
Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is...Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.展开更多
The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified geneti...The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.展开更多
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg...In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.展开更多
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th...The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.展开更多
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be...Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design.展开更多
A problem of upgrading to the Next Generation Wireless Network (NGWN) is backward compatibility with pre-existing networks, the cost and operational benefit of gradually enhancing networks, by replacing, upgrading and...A problem of upgrading to the Next Generation Wireless Network (NGWN) is backward compatibility with pre-existing networks, the cost and operational benefit of gradually enhancing networks, by replacing, upgrading and installing new wireless network infrastructure elements that can accommodate both voice and data demand. In this paper, we propose a new genetic algorithm has double population to solve Multi-Objectives Optimal of Upgrading Infrastructure (MOOUI) problem in NGWN. We modeling network topology for MOOUI problem has two levels in which mobile users are sources and both base stations and base station controllers are concentrators. Our objective function is the sources to concentrators connectivity cost as well as the cost of the installation, connection, replacement, and capacity upgrade of infrastructure equipment. We generate two populations satisfy constraints and combine them to build solutions and evaluate the performance of my algorithm with data randomly generated. Numerical results show that our algorithm is a promising approach to solve this problem.展开更多
This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet wel...This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet weld,the minimum volume of corner seam was determined in the case of non-linear design constraints.The constraints relate to the maximal stresses and fatigue of welding seam.A numerical solution to this problem is given by genetic optimization algorithm.The optimisation calculation result indicated that the active condition(constraint)was the stress from the static load.Useful and meaningful information is provided for the engineering field.展开更多
Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple f...Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.展开更多
This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation o...This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.展开更多
There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the posi...There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.展开更多
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximi...The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.展开更多
文摘The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.
基金Project (Nos. 2006BAK04A02-02 and 2006BAK02B02-08) sup-ported by the National Key Technology R&D Program, China
文摘As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.
文摘A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point. It uses the objective function itself, not derivative or any other additional information and guarantees the fast convergence toward the global optimum. This method avoids some weak points in genetic algorithm, such as inefficient to some local searching problems and its convergence is too early. Based on this model, an optimal design support system (IGBODS) is developed.IGBODS has been used in practice and the result shows that this model has great advantage than traditional one and promises good application in optimal design.
基金Supported by National"863"Program of China (No.2006AA04Z127) .
文摘A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.
基金Supported by the National Natural Science Foundation of China (No. 50375023).
文摘To solve the combinatorial optimization problem of outer layout and inner connection integrated schemes in the design of hydraulic manifold blocks ( HMB), a hybrid genetic simulated annealing algo- rithm based on niche technology is presented. This hybrid algorithm, which combines genetic algorithm, simulated annealing algorithm and niche technology, has a strong capability in global and local search, and all extrema can be found in a short time without strict requests for preferences. For the complex restricted solid spatial layout problems in HMB, the optimizing mathematical model is presented. The key technologies in the integrated layout and connection design of HMB, including the realization of coding, annealing operation and genetic operation, are discussed. The framework of HMB optimal design system based on hybrid optimization strategy is proposed. An example is given to testify the effectiveness and feasibility of the algorithm.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
文摘The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.
文摘Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.
文摘The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.
文摘In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.
基金Supported by the National Natural Science Foundation of China(1117202591116)
文摘The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.51809279)the Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities,that is,the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A).
文摘Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design.
文摘A problem of upgrading to the Next Generation Wireless Network (NGWN) is backward compatibility with pre-existing networks, the cost and operational benefit of gradually enhancing networks, by replacing, upgrading and installing new wireless network infrastructure elements that can accommodate both voice and data demand. In this paper, we propose a new genetic algorithm has double population to solve Multi-Objectives Optimal of Upgrading Infrastructure (MOOUI) problem in NGWN. We modeling network topology for MOOUI problem has two levels in which mobile users are sources and both base stations and base station controllers are concentrators. Our objective function is the sources to concentrators connectivity cost as well as the cost of the installation, connection, replacement, and capacity upgrade of infrastructure equipment. We generate two populations satisfy constraints and combine them to build solutions and evaluate the performance of my algorithm with data randomly generated. Numerical results show that our algorithm is a promising approach to solve this problem.
文摘This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet weld,the minimum volume of corner seam was determined in the case of non-linear design constraints.The constraints relate to the maximal stresses and fatigue of welding seam.A numerical solution to this problem is given by genetic optimization algorithm.The optimisation calculation result indicated that the active condition(constraint)was the stress from the static load.Useful and meaningful information is provided for the engineering field.
基金jointly supported by the National Natural Science Foundation in China (No.61601075)the Natural Science Foundation Project of CQ CSTC (No.cstc2016jcyj A0174)
文摘Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.
基金Project supported by the National Natural Science Foundation of China (Grant No.50375023)
文摘This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.
基金This project is supported by National 863 Plan (No.2001AA411140)National Natural Science Foundation of China (No.50175071).
文摘There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
基金This project is supported by National Natural Science Foundation of China(No.70471022,No.70501021)the Joint Research Scheme of National Natural Science Foundation of China(No,70418013) Hong Kong Research Grant Council,China(No.N_HKUST625/04).
文摘The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.