In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of th...In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure.展开更多
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in li...High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in liquid substrate fermentation.Initial screening of the nutritional components was performed using a Plackett-Burman design.The variables,namely,bran,bagasse,Tween 80,and yeast extract,were found to have statistically significant effects on laccase activity.These variables were further optimized using CCD-based RSM.Optimal concentrations for the maximum laccase activity were 8.144 2 g/L bran,50 g/L bagasse,0.424 1 mL/L Tween 80,and 2.832 5 g/L yeast extract.Under optimized conditions,the maximum measured laccase activity reached 96 480 U/L,which was close to the predicted value (104 830 U/L) by RSM.Therefore,RSM can be used to optimize culture components for laccase activity from Pieurotus ostreatus P40.展开更多
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb...Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.展开更多
This paper focuses on an estimation of light weighting opportunities for the frame structure of com- mercial road vehicles. This estimation is based on simpli- fied static load cases which play a predominant role for ...This paper focuses on an estimation of light weighting opportunities for the frame structure of com- mercial road vehicles. This estimation is based on simpli- fied static load cases which play a predominant role for the dimensioning of a frame structure and therefore these simplifications are not putting the general validity of the conclusions into question. A comparison of different ma- terials under this scenario shows that light metals do not show any weight reduction advantage in comparison to steel while a material-independent topology optimization has more weight reduction potential for the frame structure than a simple change of materials. Considering the con- straints of part complexity which is directly linked with production and assembly cost, the ladder frame structure has become the current state of the art design. Thus the paper also puts a spotlight on basic rules of node design and vertical load induction in order to keep the weight of such a design as low as possible. Practical examples from manufacturers show that the weight of a commercial vehicle could be reduced by 10%, and main parts of the frame structure could be reduced by 30% using high strength steel in combination with innovative production methods like roll forming.展开更多
基金National Major Scientific&Technological Special Program for"High-Grade CNC and Basic Manufacturing Equipment"of China(No.2012ZX04011-031)Science and Technology Programs of Sichuan Province,China(No.2010GZ0250,No.2011GZ0075)
文摘In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure.
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
基金National Science&Technology Pillar Program of China(No.2012BAC02B04)National Natural Science Foundation of China(No.41201306)
文摘High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in liquid substrate fermentation.Initial screening of the nutritional components was performed using a Plackett-Burman design.The variables,namely,bran,bagasse,Tween 80,and yeast extract,were found to have statistically significant effects on laccase activity.These variables were further optimized using CCD-based RSM.Optimal concentrations for the maximum laccase activity were 8.144 2 g/L bran,50 g/L bagasse,0.424 1 mL/L Tween 80,and 2.832 5 g/L yeast extract.Under optimized conditions,the maximum measured laccase activity reached 96 480 U/L,which was close to the predicted value (104 830 U/L) by RSM.Therefore,RSM can be used to optimize culture components for laccase activity from Pieurotus ostreatus P40.
文摘Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.
文摘This paper focuses on an estimation of light weighting opportunities for the frame structure of com- mercial road vehicles. This estimation is based on simpli- fied static load cases which play a predominant role for the dimensioning of a frame structure and therefore these simplifications are not putting the general validity of the conclusions into question. A comparison of different ma- terials under this scenario shows that light metals do not show any weight reduction advantage in comparison to steel while a material-independent topology optimization has more weight reduction potential for the frame structure than a simple change of materials. Considering the con- straints of part complexity which is directly linked with production and assembly cost, the ladder frame structure has become the current state of the art design. Thus the paper also puts a spotlight on basic rules of node design and vertical load induction in order to keep the weight of such a design as low as possible. Practical examples from manufacturers show that the weight of a commercial vehicle could be reduced by 10%, and main parts of the frame structure could be reduced by 30% using high strength steel in combination with innovative production methods like roll forming.