期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Addition Sequence Method of Scalar Multiplication of Elliptic Curve over OEF 被引量:2
1
作者 LIUDuo DAIYi-qi 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第1期174-178,共5页
A new elliptic curve scalar multiplication algorithm is proposed. Thealgorithm uses the Frobenius map on optimal extension field (OEF) and addition sequence We introducea new algorithm on generating addition sequence ... A new elliptic curve scalar multiplication algorithm is proposed. Thealgorithm uses the Frobenius map on optimal extension field (OEF) and addition sequence We introducea new algorithm on generating addition sequence efficiently and also give some analysis about it.Based on this algorithm, a new method of computing scalar multiplication of elliptic curve over anOEF is presented. The new method is more efficient than the traditional scalar multiplicationalgorithms of elliptic curve over OEF. Thecomparisons of traditional method and the new method arealso given. 展开更多
关键词 CRYPTOLOGY elliptic curve optimal extension field FROBENIUS additionsequence
下载PDF
A Heuristic Method of Scalar Multiplication of Elliptic Curve over OEF 被引量:1
2
作者 刘铎 罗平 戴一奇 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第2期177-183,共7页
Elliptic curve cryptosystem is the focus of public key cryptology nowadays, for it has many advantages RSA lacks. This paper introduced a new heuristic algorithm on computing multiple scalar multiplications of a given... Elliptic curve cryptosystem is the focus of public key cryptology nowadays, for it has many advantages RSA lacks. This paper introduced a new heuristic algorithm on computing multiple scalar multiplications of a given point. Based on this algorithm, a new method of computing scalar multiplication of elliptic curve over optimal extension field (OEF) using Frobenius map was presented. The new method is more efficient than the traditional ones. In the last part of this paper, the comparison was given in the end. 展开更多
关键词 CRYPTOLOGY elliptic curve optimal extension field FROBENIUS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部