To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy ac...To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.展开更多
The objective of this work was to determine the optimum size and amount of raw materials which influence the viscosity of ceramic paste using the experimental design for the production of tubular support by the extrus...The objective of this work was to determine the optimum size and amount of raw materials which influence the viscosity of ceramic paste using the experimental design for the production of tubular support by the extrusion technique and its application in microfiltration. The Box Behnken design was used to optimize the viscosity of the ceramic paste. ANOVA was used to model the system represented by independent parameters and dependent output response and to optimize the system by estimating the statistical parameters. A three-factor and three-level design was used generating thus 15 experiments. The independent factors were the amount of porogen, size of porogen and amount of binder and dependent factor the viscosity of the ceramic paste. The minimum (−1), intermediate (0) and maximum (+1) level of the amount of porogen, size of porogen and amount of binder used were 20 g, 30 g and 40 g, 50 μm, 100 μm and 150 μm, and 2 g, 3.5 g and 5 g respectively. The statistical analyses showed that the values of the answers would adapt to a second degree polynomial model. The R-square value obtained was greater than 95%, the Biais factor was equal to the unit and the Absolute Average Deviation (AAD) equal to the zero thus validating the model. The optimal size of raw material was found to be 100 μm for an amount of clay of 66 g, amount of porogen of 30 g and amount of binder of 4 g. The optimum viscosity of the ceramic paste was found to be 26.7 Pa∙s which is close to the viscosity of the clay paste only found to be 28.5 Pa∙s, thus good for shaping by the extrusion technique. The ceramic paste showed a pseudo-plastic behavior. The tubular porous support was sintered at 950°C and the dimensions, such as outer and inner diameters and length of the tube were 4 cm, 2 cm, and 19 cm, respectively. The sintered membrane possesses a porosity of 43.5%, water permeability of 244.9 L/h∙m2 bar, an average pore size of 2.4 μm and mechanical strength of 9.2 MPa with very good corrosion resistance in acidic and basic conditions. The membrane was subjected to microfiltration of synthetic clay suspension at various combinations of applied pressures (0.5 - 2 bar) with a feed concentration of 100 NTU. An increase in the applied pressure leads to an increase in the flow rate and retention rate. The flow rate decreases steadily with time. The highest retention was obtained at 2 bar with permeability of 184.69 L/h∙m2 bar and a retention of 96% decreasing the turbidity to about 3.5 NTU which is below the acceptable value of 5 NTU.展开更多
Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the me...Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life.展开更多
This paper concerns the weak solutions of some Monge-Amp^re type equa- tions in the optimal transportation theory. The relationship between the Aleksandrov solutions and the viscosity solutions of the Monge-Ampere typ...This paper concerns the weak solutions of some Monge-Amp^re type equa- tions in the optimal transportation theory. The relationship between the Aleksandrov solutions and the viscosity solutions of the Monge-Ampere type equations is discussed. A uniform estimate for solution of the Dirichlet problem with homogeneous boundary value is obtained.展开更多
This article is devoted to the study of fully nonlinear stochastic Hamilton-Jacobi (HJ) equations for the optimal stochastic control problem of ordinary differential equations with random coefficients. Under the stand...This article is devoted to the study of fully nonlinear stochastic Hamilton-Jacobi (HJ) equations for the optimal stochastic control problem of ordinary differential equations with random coefficients. Under the standard Lipschitz continuity assumptions on the coefficients, the value function is proved to be the unique viscosity solution of the associated stochastic HJ equation.展开更多
Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered. The nonlinear Nisio' s semigroup for such optimal control problems was constructed. A Hamil...Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered. The nonlinear Nisio' s semigroup for such optimal control problems was constructed. A Hamilton-Jacobi-Bellman equation with the Neumann boundary condition associated with this semigroup was obtained. Then, viscosity solutions of this equation were defined and discussed, and various uniqueness of this equation was also considered. Finally, the value function was such optimal control problems is shown to be a viscosity solution of this equation.展开更多
This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity sol...This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity solution theory we show that the switching lower-value function is a viscosity solution of the appropriate systems of quasi-variational inequalities(the appropriate generalization of the Hamilton-Jacobi equation in this context) and that the minimal such switching-storage function is equal to the continuous switching lower-value for the game. With the lower value function a optimal switching control is designed for minimizing the cost of running the systems.展开更多
This paper is concerned with the relationship between general maximum principle and dynamic programming principle for the stochastic recursive optimal control problem with jumps,where the control domain is not necessa...This paper is concerned with the relationship between general maximum principle and dynamic programming principle for the stochastic recursive optimal control problem with jumps,where the control domain is not necessarily convex.Relations among the adjoint processes,the generalized Hamiltonian function and the value function are proven,under the assumption of a smooth value function and within the framework of viscosity solutions,respectively.Some examples are given to illustrate the theoretical results.展开更多
This paper tested the viscosity of prepreg in the automatic placement process, and conducted the probe and placement-90° peel tests through the test systems. The law of variation of prepreg viscosity during the l...This paper tested the viscosity of prepreg in the automatic placement process, and conducted the probe and placement-90° peel tests through the test systems. The law of variation of prepreg viscosity during the laying process was studied through these tests under different conditions by taking the peel force to intuitively and quantitatively characterise the viscosity of the prepreg.The results show that this viscosity is inversely proportional to the laying rate, proportional to the laying pressure, and quadratic to the laying temperature. Then, peel tests were simulated to validate both the correctness of the peel test and that of the probe test data fitting the two-line cohesion model. On this basis, a response surface test for laying and peeling was designed. Taking viscous peel force as the response target, the laying process parameters were optimised and the significance of their influence was further studied. The error between the test value and the predicted value of the maximum viscous peel force is 3.03%.展开更多
基金This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.89233218CNA000001The Authors gratefully acknowledge the support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing Program.LA-UR-22-33159.
文摘To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.
文摘The objective of this work was to determine the optimum size and amount of raw materials which influence the viscosity of ceramic paste using the experimental design for the production of tubular support by the extrusion technique and its application in microfiltration. The Box Behnken design was used to optimize the viscosity of the ceramic paste. ANOVA was used to model the system represented by independent parameters and dependent output response and to optimize the system by estimating the statistical parameters. A three-factor and three-level design was used generating thus 15 experiments. The independent factors were the amount of porogen, size of porogen and amount of binder and dependent factor the viscosity of the ceramic paste. The minimum (−1), intermediate (0) and maximum (+1) level of the amount of porogen, size of porogen and amount of binder used were 20 g, 30 g and 40 g, 50 μm, 100 μm and 150 μm, and 2 g, 3.5 g and 5 g respectively. The statistical analyses showed that the values of the answers would adapt to a second degree polynomial model. The R-square value obtained was greater than 95%, the Biais factor was equal to the unit and the Absolute Average Deviation (AAD) equal to the zero thus validating the model. The optimal size of raw material was found to be 100 μm for an amount of clay of 66 g, amount of porogen of 30 g and amount of binder of 4 g. The optimum viscosity of the ceramic paste was found to be 26.7 Pa∙s which is close to the viscosity of the clay paste only found to be 28.5 Pa∙s, thus good for shaping by the extrusion technique. The ceramic paste showed a pseudo-plastic behavior. The tubular porous support was sintered at 950°C and the dimensions, such as outer and inner diameters and length of the tube were 4 cm, 2 cm, and 19 cm, respectively. The sintered membrane possesses a porosity of 43.5%, water permeability of 244.9 L/h∙m2 bar, an average pore size of 2.4 μm and mechanical strength of 9.2 MPa with very good corrosion resistance in acidic and basic conditions. The membrane was subjected to microfiltration of synthetic clay suspension at various combinations of applied pressures (0.5 - 2 bar) with a feed concentration of 100 NTU. An increase in the applied pressure leads to an increase in the flow rate and retention rate. The flow rate decreases steadily with time. The highest retention was obtained at 2 bar with permeability of 184.69 L/h∙m2 bar and a retention of 96% decreasing the turbidity to about 3.5 NTU which is below the acceptable value of 5 NTU.
基金Supported by the National Natural Science Foundation of China(51774307).
文摘Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life.
基金supported by National Natural Science Foundation of China(11071119)
文摘This paper concerns the weak solutions of some Monge-Amp^re type equa- tions in the optimal transportation theory. The relationship between the Aleksandrov solutions and the viscosity solutions of the Monge-Ampere type equations is discussed. A uniform estimate for solution of the Dirichlet problem with homogeneous boundary value is obtained.
基金partially supported by the National Science and Engineering Research Council of Canada(NSERC)the start-up funds from the University of Calgary
文摘This article is devoted to the study of fully nonlinear stochastic Hamilton-Jacobi (HJ) equations for the optimal stochastic control problem of ordinary differential equations with random coefficients. Under the standard Lipschitz continuity assumptions on the coefficients, the value function is proved to be the unique viscosity solution of the associated stochastic HJ equation.
文摘Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered. The nonlinear Nisio' s semigroup for such optimal control problems was constructed. A Hamilton-Jacobi-Bellman equation with the Neumann boundary condition associated with this semigroup was obtained. Then, viscosity solutions of this equation were defined and discussed, and various uniqueness of this equation was also considered. Finally, the value function was such optimal control problems is shown to be a viscosity solution of this equation.
基金Supported by the SRFEB of Henan Province(2003110002)
文摘This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity solution theory we show that the switching lower-value function is a viscosity solution of the appropriate systems of quasi-variational inequalities(the appropriate generalization of the Hamilton-Jacobi equation in this context) and that the minimal such switching-storage function is equal to the continuous switching lower-value for the game. With the lower value function a optimal switching control is designed for minimizing the cost of running the systems.
基金supported by National Key Research and Development Program of China under Grant No.2022YFA1006104the National Natural Science Foundations of China under Grant Nos.12471419 and 12271304the Natural Science Foundation of Shandong Province under Grant No.ZR2022JQ01。
文摘This paper is concerned with the relationship between general maximum principle and dynamic programming principle for the stochastic recursive optimal control problem with jumps,where the control domain is not necessarily convex.Relations among the adjoint processes,the generalized Hamiltonian function and the value function are proven,under the assumption of a smooth value function and within the framework of viscosity solutions,respectively.Some examples are given to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China(No.51875159)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,China(No.XHT 2020-002)+5 种基金Fok Ying Tung Education Foundation,China(No.171046)the Key Research and Development Program of Anhui Province,China(No.201904d07020013)the Fundamental Research Funds for the Central Universities,China(Nos.PA2020GDJQ0029 and PA2020GDSK0075)the National Key Research and Development Project,China(No.2019YFB1504800)the Beijing Natural Science Foundation,China(No.2192044)2020 and 2021 Open Project of State Key Laboratory of Organic-Inorganic Composites,China(Nos.Oic-202001008 and Oic-202101008)。
文摘This paper tested the viscosity of prepreg in the automatic placement process, and conducted the probe and placement-90° peel tests through the test systems. The law of variation of prepreg viscosity during the laying process was studied through these tests under different conditions by taking the peel force to intuitively and quantitatively characterise the viscosity of the prepreg.The results show that this viscosity is inversely proportional to the laying rate, proportional to the laying pressure, and quadratic to the laying temperature. Then, peel tests were simulated to validate both the correctness of the peel test and that of the probe test data fitting the two-line cohesion model. On this basis, a response surface test for laying and peeling was designed. Taking viscous peel force as the response target, the laying process parameters were optimised and the significance of their influence was further studied. The error between the test value and the predicted value of the maximum viscous peel force is 3.03%.