This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield ...Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)).展开更多
New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebr...New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.展开更多
Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are present...Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.展开更多
In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current ...In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.展开更多
This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators ...This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.展开更多
In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective...In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective programming and its saddle point theorem about cone efficient solution. We set up Mond-Weir type duality and Craven type duality for nonsmooth multiobjective programming with generalized essentially convex functions, and prove them.展开更多
Dynamic soaring is a flight maneuver to exploit gradient wind field to extend endurance and traveling distance.Optimal trajectories for permissible wind conditions are generated for loitering dynamic soaring as well a...Dynamic soaring is a flight maneuver to exploit gradient wind field to extend endurance and traveling distance.Optimal trajectories for permissible wind conditions are generated for loitering dynamic soaring as well as for traveling patterns with a small unmanned aerial vehicle.The efficient direct collection approach based on the Runge-Kutta integrator is used to solve the optimization problem.The fast convergence of the optimization process leads to the potential for real-time applications.Based on the results of trajectory optimizations,the general permissible wind conditions which involve the allowable power law exponents and feasible reference wind strengths supporting dynamic soaring are proposed.Increasing the smallest allowable wingtip clearance to trade for robustness and safety of the vehicle system and improving the maximum traveling speed results in shrunken permissible domain of wind conditions for loitering and traveling dynamic soaring respectively.Sensitivity analyses of vehicle model parameters show that properly reducing the wingspan and increasing the maximum lift-to-drag ratio and the wing loading can enlarge the permissible domain.Permissible domains for different traveling directions show that the downwind dynamic soaring benefitting from the drift is more efficient than the upwind traveling pattern in terms of permissible domain size and net traveling speed.展开更多
In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These co...In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.展开更多
There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions...There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.展开更多
In this paper, new sufficient optimality theorems for a solution of a differentiable bilevel multiobjective optimization problem (BMOP) are established. We start with a discussion on solution concepts in bilevel multi...In this paper, new sufficient optimality theorems for a solution of a differentiable bilevel multiobjective optimization problem (BMOP) are established. We start with a discussion on solution concepts in bilevel multiobjective programming;a theorem giving necessary and sufficient conditions for a decision vector to be called a solution of the BMOP and a proposition giving the relations between four types of solutions of a BMOP are presented and proved. Then, under the pseudoconvexity assumptions on the upper and lower level objective functions and the quasiconvexity assumptions on the constraints functions, we establish and prove two new sufficient optimality theorems for a solution of a general BMOP with coupled upper level constraints. Two corollary of these theorems, in the case where the upper and lower level objectives and constraints functions are convex are presented.展开更多
This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for...This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.展开更多
The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unif...The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.展开更多
A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We...A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We review second order optimality conditions for (PE) in connection with those of (P). A strictly complementary slackness condition can be made to get the property that sufficient optimality conditions for (P) imply the same property for (PE). We give some new results (see Theorems 3.1, 3.2 and 3.3) .Without any assumption, a counterexample is given to show that these conditions are not equivalent.展开更多
New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE)...New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.展开更多
In this paper, by using the notion of convexificator, we introduce the generalized standard Abadie constraint qualification and the generalized MPVC Abadie constraint qualification, and define the generalized stationa...In this paper, by using the notion of convexificator, we introduce the generalized standard Abadie constraint qualification and the generalized MPVC Abadie constraint qualification, and define the generalized stationary conditions for the nonsmooth mathematical program with vanishing constraints (MPVC for short). We show that the generalized strong stationary is the first order necessary optimality condition for nonsmooth MPVC under the generalized standard Abadie constraint qualification. Sufficient conditions for global or local optimality for nonsmooth MPVC are also derived under some generalized convexity assumptions.展开更多
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob...This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.展开更多
[Objective] The aim was to optimize the fermentation medium and conditions of antibiotic active substances produced by Antarctic psychrotrophic bacterium Rheinheimera sp.97.[Method] Single-factor experiment and orthog...[Objective] The aim was to optimize the fermentation medium and conditions of antibiotic active substances produced by Antarctic psychrotrophic bacterium Rheinheimera sp.97.[Method] Single-factor experiment and orthogonal test were adopted to optimize the fermentation medium of antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97,while the fermentation conditions were optimized by single-factor experiment.[Result] The optimum fermentation medium for the antibiotic active substances production was as follows:tryptone 3.0 g/L,ammonium sulfate 1.0 g/L,starch 2.0 g/L,NaCl 15.0 g/L.The optimized fermentation conditions were as follows:the starting pH of medium was 8.0,fermentation temperature was 10 ℃,liquid volume in Erlenmeyer flask was 30 %(V/V)and inoculation amount was 1%(V/V).Under the optimized fermentation medium and conditions,the antibacterial activity of R.sp.97 was increased by 18.1%.[Conclusion] This study had provided basis for the antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97.展开更多
基金This work was supported by National Natural Science Foundation of China (10401041)Natural Science Foundation of Hubei Province (2004ABA009)
文摘This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金Supported by the National Basic Research Program of China(973 Program,2012CB215000)
文摘Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)).
基金Supported by the NSF of Shaanxi Provincial Educational Department(06JK152)
文摘New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.
文摘Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.
基金Supported by the National Natural Science Foundation of China(11971433)First Class Discipline of Zhe-jiang-A(Zhejiang Gongshang University-Statistics,1020JYN4120004G-091),Graduate Scientic Research and Innovation Foundation of Zhejiang Gongshang University.
文摘In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.
基金Supported by Chongqing Key Lab. of Operations Research and System Engineering
文摘This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.
文摘In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective programming and its saddle point theorem about cone efficient solution. We set up Mond-Weir type duality and Craven type duality for nonsmooth multiobjective programming with generalized essentially convex functions, and prove them.
文摘Dynamic soaring is a flight maneuver to exploit gradient wind field to extend endurance and traveling distance.Optimal trajectories for permissible wind conditions are generated for loitering dynamic soaring as well as for traveling patterns with a small unmanned aerial vehicle.The efficient direct collection approach based on the Runge-Kutta integrator is used to solve the optimization problem.The fast convergence of the optimization process leads to the potential for real-time applications.Based on the results of trajectory optimizations,the general permissible wind conditions which involve the allowable power law exponents and feasible reference wind strengths supporting dynamic soaring are proposed.Increasing the smallest allowable wingtip clearance to trade for robustness and safety of the vehicle system and improving the maximum traveling speed results in shrunken permissible domain of wind conditions for loitering and traveling dynamic soaring respectively.Sensitivity analyses of vehicle model parameters show that properly reducing the wingspan and increasing the maximum lift-to-drag ratio and the wing loading can enlarge the permissible domain.Permissible domains for different traveling directions show that the downwind dynamic soaring benefitting from the drift is more efficient than the upwind traveling pattern in terms of permissible domain size and net traveling speed.
文摘In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.
基金Supported by the National Natural Science Foundation of China(11361001)Natural Science Foundation of Ningxia(NZ14101)
文摘There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.
文摘In this paper, new sufficient optimality theorems for a solution of a differentiable bilevel multiobjective optimization problem (BMOP) are established. We start with a discussion on solution concepts in bilevel multiobjective programming;a theorem giving necessary and sufficient conditions for a decision vector to be called a solution of the BMOP and a proposition giving the relations between four types of solutions of a BMOP are presented and proved. Then, under the pseudoconvexity assumptions on the upper and lower level objective functions and the quasiconvexity assumptions on the constraints functions, we establish and prove two new sufficient optimality theorems for a solution of a general BMOP with coupled upper level constraints. Two corollary of these theorems, in the case where the upper and lower level objectives and constraints functions are convex are presented.
基金Supported by the National Natural Science Foundation of China(10871216) Supported by the Science and Technology Research Project of Chongqing Municipal Education Commission(KJ100419) Supported by the Natural Science Foundation Project of CQ CSTC(cstcjjA00019)
文摘This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.
基金Supported by the Science Foundation of Shaanxi Provincial Educational Department Natural Science Foundation of China(06JK152) Supported by the Graduate Innovation Project of Yanan uni- versity(YCX201003)
文摘The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.
文摘A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We review second order optimality conditions for (PE) in connection with those of (P). A strictly complementary slackness condition can be made to get the property that sufficient optimality conditions for (P) imply the same property for (PE). We give some new results (see Theorems 3.1, 3.2 and 3.3) .Without any assumption, a counterexample is given to show that these conditions are not equivalent.
文摘New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.
文摘In this paper, by using the notion of convexificator, we introduce the generalized standard Abadie constraint qualification and the generalized MPVC Abadie constraint qualification, and define the generalized stationary conditions for the nonsmooth mathematical program with vanishing constraints (MPVC for short). We show that the generalized strong stationary is the first order necessary optimality condition for nonsmooth MPVC under the generalized standard Abadie constraint qualification. Sufficient conditions for global or local optimality for nonsmooth MPVC are also derived under some generalized convexity assumptions.
文摘This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.
基金Supported by National Department Public Benefit Marine Scientific Research Foundation(201005032-2)National High Technology Research and Development Program of China(2007AA091905)~~
文摘[Objective] The aim was to optimize the fermentation medium and conditions of antibiotic active substances produced by Antarctic psychrotrophic bacterium Rheinheimera sp.97.[Method] Single-factor experiment and orthogonal test were adopted to optimize the fermentation medium of antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97,while the fermentation conditions were optimized by single-factor experiment.[Result] The optimum fermentation medium for the antibiotic active substances production was as follows:tryptone 3.0 g/L,ammonium sulfate 1.0 g/L,starch 2.0 g/L,NaCl 15.0 g/L.The optimized fermentation conditions were as follows:the starting pH of medium was 8.0,fermentation temperature was 10 ℃,liquid volume in Erlenmeyer flask was 30 %(V/V)and inoculation amount was 1%(V/V).Under the optimized fermentation medium and conditions,the antibacterial activity of R.sp.97 was increased by 18.1%.[Conclusion] This study had provided basis for the antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97.