Basing on a viewpoint of all sided water producing system,a comprehensive analysis of the operation status and the relationship between each working unit in water producing system,including coagulation,sedimentation...Basing on a viewpoint of all sided water producing system,a comprehensive analysis of the operation status and the relationship between each working unit in water producing system,including coagulation,sedimentation and filtration etc.was made.By investigating the influence of backwashing consumption,the amount of sludge ejected from sedimentation tank and coagulant ratio upon the cost,the cost effective function of the system was presented.Afterwards,the solution was found out and the corresponding computer program was developed.When applied with real world data,it proved that this method significantly reduced the water producing cost.展开更多
In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model w...In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.展开更多
In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow ...In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.展开更多
With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconne...With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%.展开更多
In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improv...In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems.展开更多
Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjus...Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.展开更多
The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,con...Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,contributions on optimal operation of industrial MTO plants from a process systems engineering perspective are rare.Based on relevance vector machine(RVM),a data-driven framework for optimal operation of the industrial MTO process is established to fully utilize the plentiful industrial data sets.RVM correlates the yield distribution prediction of main products and the operation conditions.These correlations then serve as the constraints for the multi-objective optimization model to pursue the optimal operation of the plant.Nondominated sorting genetic algorithmⅡis used to solve the optimization problem.Comprehensive tests demonstrate that the ethylene yield is effectively improved based on the proposed framework.Since RVM does provide the distribution prediction instead of point estimation,the established model is expected to provide guidance for actual production operations under uncertainty.展开更多
Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by improving the performance and the ef ciency of reuse of information and knowledge two critical ele- ments in polyet...Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by improving the performance and the ef ciency of reuse of information and knowledge two critical ele- ments in polyethylene smart manufacturing. In this paper, we propose an overall structure for a knowl- edge base based on practical customer demand and the mechanism of the polyethylene process. First, an ontology of the polyethylene process constructed using the seven-step method is introduced as a carrier for knowledge representation and sharing. Next, a prediction method is presented for the molecular weight distribution (MWD) based on a back propagation (BP) neural network model, by analyzing the relationships between the operating conditions and the parameters of the MWD. Based on this network, a differential evolution algorithm is introduced to optimize the operating conditions by tuning the MWD. Finally, utilizing a MySQL database and the Java programming language, a knowledge base system for the operation optimization of the polyethylene process based on a browser/server framework is realized.展开更多
To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-base...To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.展开更多
Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical mode...Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.展开更多
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per...An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.展开更多
A new optimizing framework of process operation is proposed to deal with optimizing op- eration of continuous stirred tank reactor (CSTR). The optimization framework includes two layers: the first layer, necessary ...A new optimizing framework of process operation is proposed to deal with optimizing op- eration of continuous stirred tank reactor (CSTR). The optimization framework includes two layers: the first layer, necessary condition of optimally (NCO) tracking controller, calculates the optimal set-point of the process; and the second layer, output neighboring-extremal controller, calculates the input values of the controlled plant. The algorithm design and convergent analysis of output neighboring-extremal controller are discussed emphatically, and in the case of existing parametric uncertainty, the approach is shown to converge to the optimum atmost in two iterations. At last the approach is illustrated by simulation results for a dynamic CSTR.展开更多
Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP(Error Back Propagation) neural networks...Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP(Error Back Propagation) neural networks. To solve this model, a new 3-layer cultural evolving algorithm framework which has a population space, a medium space and a belief space is firstly conceived. Standard differential evolution algorithm(DE), genetic algorithm(GA), and particle swarm optimization algorithm(PSO) are embedded in this framework to build 3-layer mixed cultural DE/GA/PSO(3LM-CDE, 3LM-CGA, and 3LM-CPSO) algorithms. The accuracy and efficiency of the proposed hybrid algorithms are firstly tested in 20 benchmark nonlinear constrained functions. Then, the operational optimization model for syngas production in a Texaco coal-water slurry gasifier of a real-world chemical plant is solved effectively. The simulation results are encouraging that the 3-layer cultural algorithm evolving framework suggests ways in which the performance of DE, GA, PSO and other population-based evolutionary algorithms(EAs) can be improved,and the optimal operational parameters based on 3LM-CDE algorithm of the syngas production in the Texaco coalwater slurry gasifier shows outstanding computing results than actual industry use and other algorithms.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
Based on the target analysis of the operation optimization for power plants, a novel system scheme called operation optimization decision support system (OODSS) is brought forward. According to the structure and desig...Based on the target analysis of the operation optimization for power plants, a novel system scheme called operation optimization decision support system (OODSS) is brought forward. According to the structure and design thinking of decision support system (DSS), the overall structure of the OODSS is studied, and the scheme of the sub systems in the OODSS such as the user interface system, the problem processing system, the database system, the model base system, the expert system (ES) and the data mining sy...展开更多
Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load i...Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.展开更多
The renewable portfolio standard has been promoted in parallel with the reform of the electricity market,and the flexibility requirement of the power system has rapidly increased.To promote renewable energy consumptio...The renewable portfolio standard has been promoted in parallel with the reform of the electricity market,and the flexibility requirement of the power system has rapidly increased.To promote renewable energy consumption and improve power system flexibility,a bi-level optimal operation model of the electricity market is proposed.A probabilistic model of the flexibility requirement is established,considering the correlation between wind power,photovoltaic power,and load.A bi-level optimization model is established for the multi-markets;the upper and lower models represent the intra-provincial market and inter-provincial market models,respectively.To efficiently solve the model,it is transformed into a mixed-integer linear programming model using the Karush–Kuhn–Tucker condition and Lagrangian duality theory.The economy and flexibility of the model are verified using a provincial power grid as an example.展开更多
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
文摘Basing on a viewpoint of all sided water producing system,a comprehensive analysis of the operation status and the relationship between each working unit in water producing system,including coagulation,sedimentation and filtration etc.was made.By investigating the influence of backwashing consumption,the amount of sludge ejected from sedimentation tank and coagulant ratio upon the cost,the cost effective function of the system was presented.Afterwards,the solution was found out and the corresponding computer program was developed.When applied with real world data,it proved that this method significantly reduced the water producing cost.
文摘In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.
基金supported by the National Natural Science Foundation of China(U2066211)。
文摘With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%.
基金supported by State Grid Corporation Technology Project (5400-201956447A-0-0-00)。
文摘In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems.
基金supported by Author Special Foundation of National Excellent Doctoral Dissertation of China (Grant No. 2007B41)Jiangsu Provincial Foundation of "333 Talents Engineering" of ChinaJiangsu Provincial Academic Header Foundation of Qinglan Engineering of China
文摘Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
基金financial support for this work from National Natural Science Foundation of China(21978150,21706143)。
文摘Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,contributions on optimal operation of industrial MTO plants from a process systems engineering perspective are rare.Based on relevance vector machine(RVM),a data-driven framework for optimal operation of the industrial MTO process is established to fully utilize the plentiful industrial data sets.RVM correlates the yield distribution prediction of main products and the operation conditions.These correlations then serve as the constraints for the multi-objective optimization model to pursue the optimal operation of the plant.Nondominated sorting genetic algorithmⅡis used to solve the optimization problem.Comprehensive tests demonstrate that the ethylene yield is effectively improved based on the proposed framework.Since RVM does provide the distribution prediction instead of point estimation,the established model is expected to provide guidance for actual production operations under uncertainty.
文摘Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by improving the performance and the ef ciency of reuse of information and knowledge two critical ele- ments in polyethylene smart manufacturing. In this paper, we propose an overall structure for a knowl- edge base based on practical customer demand and the mechanism of the polyethylene process. First, an ontology of the polyethylene process constructed using the seven-step method is introduced as a carrier for knowledge representation and sharing. Next, a prediction method is presented for the molecular weight distribution (MWD) based on a back propagation (BP) neural network model, by analyzing the relationships between the operating conditions and the parameters of the MWD. Based on this network, a differential evolution algorithm is introduced to optimize the operating conditions by tuning the MWD. Finally, utilizing a MySQL database and the Java programming language, a knowledge base system for the operation optimization of the polyethylene process based on a browser/server framework is realized.
文摘To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.
文摘Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.
文摘An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.
文摘A new optimizing framework of process operation is proposed to deal with optimizing op- eration of continuous stirred tank reactor (CSTR). The optimization framework includes two layers: the first layer, necessary condition of optimally (NCO) tracking controller, calculates the optimal set-point of the process; and the second layer, output neighboring-extremal controller, calculates the input values of the controlled plant. The algorithm design and convergent analysis of output neighboring-extremal controller are discussed emphatically, and in the case of existing parametric uncertainty, the approach is shown to converge to the optimum atmost in two iterations. At last the approach is illustrated by simulation results for a dynamic CSTR.
基金Supported by the National Natural Science Foundation of China(61174040,U1162110,21206174)Shanghai Commission of Nature Science(12ZR1408100)
文摘Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP(Error Back Propagation) neural networks. To solve this model, a new 3-layer cultural evolving algorithm framework which has a population space, a medium space and a belief space is firstly conceived. Standard differential evolution algorithm(DE), genetic algorithm(GA), and particle swarm optimization algorithm(PSO) are embedded in this framework to build 3-layer mixed cultural DE/GA/PSO(3LM-CDE, 3LM-CGA, and 3LM-CPSO) algorithms. The accuracy and efficiency of the proposed hybrid algorithms are firstly tested in 20 benchmark nonlinear constrained functions. Then, the operational optimization model for syngas production in a Texaco coal-water slurry gasifier of a real-world chemical plant is solved effectively. The simulation results are encouraging that the 3-layer cultural algorithm evolving framework suggests ways in which the performance of DE, GA, PSO and other population-based evolutionary algorithms(EAs) can be improved,and the optimal operational parameters based on 3LM-CDE algorithm of the syngas production in the Texaco coalwater slurry gasifier shows outstanding computing results than actual industry use and other algorithms.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
文摘Based on the target analysis of the operation optimization for power plants, a novel system scheme called operation optimization decision support system (OODSS) is brought forward. According to the structure and design thinking of decision support system (DSS), the overall structure of the OODSS is studied, and the scheme of the sub systems in the OODSS such as the user interface system, the problem processing system, the database system, the model base system, the expert system (ES) and the data mining sy...
基金The National Natural Science Foundation of China(No.51176031)
文摘Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.
基金supported by the National Key R&D Program of China(2018YFA0702200)Science and Technology Project of State Grid Shandong Electric Power Corporation(52062518000Q)。
文摘The renewable portfolio standard has been promoted in parallel with the reform of the electricity market,and the flexibility requirement of the power system has rapidly increased.To promote renewable energy consumption and improve power system flexibility,a bi-level optimal operation model of the electricity market is proposed.A probabilistic model of the flexibility requirement is established,considering the correlation between wind power,photovoltaic power,and load.A bi-level optimization model is established for the multi-markets;the upper and lower models represent the intra-provincial market and inter-provincial market models,respectively.To efficiently solve the model,it is transformed into a mixed-integer linear programming model using the Karush–Kuhn–Tucker condition and Lagrangian duality theory.The economy and flexibility of the model are verified using a provincial power grid as an example.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.