The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular valu...The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.展开更多
In the existing small-signal stability constrained optimal power flow(SSSC-OPF)algorithms,only the rightmost eigenvalue or eigenvalues that do not satisfy a given threshold,e.g.,damping ratio threshold and real-part t...In the existing small-signal stability constrained optimal power flow(SSSC-OPF)algorithms,only the rightmost eigenvalue or eigenvalues that do not satisfy a given threshold,e.g.,damping ratio threshold and real-part threshold of eigenvalue,are considered in the small-signal stability constraints.The effect of steady-state,i.e.,operating point,changes on eigenvalues is not fully taken into account.In this paper,the small-signal stability constraint that can fully reflect the eigenvalue change and system dynamic performance requirement is formed by analyzing the eigenvalue distribution on the complex plane.The small-signal stability constraint is embedded into the standard optimal power flow model for generation reschedul-ing.The simultaneous solution formula of the SSSC-OPF is established and solved by the quasi-Newton approach,while penalty factors corresponding to the eigenvalue constraints are determined by the stabilization degree of constrained eigenvalues.To improve the computation speed,a hybrid algorithm for eigenvalue computation in the optimization process is proposed,which includes variable selection for eigenvalue estimation and strategy selection for eigenvalue computation.The effectiveness of the proposed algorithm is tested and validated on the New England 10-machine 39-bus system and a modified practical 68-machine 2395-bus system.展开更多
In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional p...In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.展开更多
This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mod...This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mode,and tracking technology(MTT)is used to avoid frequent alternations of target mode in optimization procedures.An improved planted growth simulation algorithm(IPGSA),which has high search efficiency and quick convergence speed,is proposed to optimize controller parameters coordinately.Based on case study of a large-scale power grid,and by using local and interregional low-frequency oscillation modes as target modes,simulation results verify proposed method in this paper.Furthermore,coordination optimization strategy adapted to multi-operating conditions demonstrates that the proposed approach is robust.展开更多
This paper presents an approach for oscillation damping with an integrated multi-stage linear quadratic regulator(MSLQR)FACTS controller combining power oscillation damping(POD)capabilities.The particle swarm optimiz...This paper presents an approach for oscillation damping with an integrated multi-stage linear quadratic regulator(MSLQR)FACTS controller combining power oscillation damping(POD)capabilities.The particle swarm optimization(PSO)technique has been used for precise tuning initial control parameters of power system stabilizers(PSS)and FACTS devices(such as STATCOM and UPFC)which results in improved controller performance.It is observed that the proposed control structure damps the oscillations adequately and is modular in design methodology.The sample power system comprising six areas is considered to demonstrate the effectiveness of the proposed concept.The states inter-relation which is shown with eigenvalues reflects better regulation with the proposed controller.The step response also validates the controller performance.展开更多
文摘The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.
基金supported by the National Natural Science Foundation of China(No.62203395)the Postdoctoral Research Project of Henan Province(No.202101011)the Key R&D and Promotion Project of Henan Province(No.222102220041).
文摘In the existing small-signal stability constrained optimal power flow(SSSC-OPF)algorithms,only the rightmost eigenvalue or eigenvalues that do not satisfy a given threshold,e.g.,damping ratio threshold and real-part threshold of eigenvalue,are considered in the small-signal stability constraints.The effect of steady-state,i.e.,operating point,changes on eigenvalues is not fully taken into account.In this paper,the small-signal stability constraint that can fully reflect the eigenvalue change and system dynamic performance requirement is formed by analyzing the eigenvalue distribution on the complex plane.The small-signal stability constraint is embedded into the standard optimal power flow model for generation reschedul-ing.The simultaneous solution formula of the SSSC-OPF is established and solved by the quasi-Newton approach,while penalty factors corresponding to the eigenvalue constraints are determined by the stabilization degree of constrained eigenvalues.To improve the computation speed,a hybrid algorithm for eigenvalue computation in the optimization process is proposed,which includes variable selection for eigenvalue estimation and strategy selection for eigenvalue computation.The effectiveness of the proposed algorithm is tested and validated on the New England 10-machine 39-bus system and a modified practical 68-machine 2395-bus system.
文摘In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.
基金This work was supported by the Shanghai Science and Technology Commission Innovation Action Plan(Grant No.18DZ1203200).
文摘This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mode,and tracking technology(MTT)is used to avoid frequent alternations of target mode in optimization procedures.An improved planted growth simulation algorithm(IPGSA),which has high search efficiency and quick convergence speed,is proposed to optimize controller parameters coordinately.Based on case study of a large-scale power grid,and by using local and interregional low-frequency oscillation modes as target modes,simulation results verify proposed method in this paper.Furthermore,coordination optimization strategy adapted to multi-operating conditions demonstrates that the proposed approach is robust.
文摘This paper presents an approach for oscillation damping with an integrated multi-stage linear quadratic regulator(MSLQR)FACTS controller combining power oscillation damping(POD)capabilities.The particle swarm optimization(PSO)technique has been used for precise tuning initial control parameters of power system stabilizers(PSS)and FACTS devices(such as STATCOM and UPFC)which results in improved controller performance.It is observed that the proposed control structure damps the oscillations adequately and is modular in design methodology.The sample power system comprising six areas is considered to demonstrate the effectiveness of the proposed concept.The states inter-relation which is shown with eigenvalues reflects better regulation with the proposed controller.The step response also validates the controller performance.