In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea...Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales.展开更多
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int...This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.展开更多
The structure of the optimal solution set is derived for linear fractional programming with the representation theorem of polyhedral sets. Based on an adaptation of the convex simplex method credited to Gilmore and Go...The structure of the optimal solution set is derived for linear fractional programming with the representation theorem of polyhedral sets. Based on an adaptation of the convex simplex method credited to Gilmore and Gomory, we give the uniqueness condition of optimal solution and the computational procedures to find all optimal solutions if the uniqueness condition is not satisfied. Finally, an illustrative example is also given.展开更多
In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, t...In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.展开更多
Abstract Production planning under uncertainty is considered as one of the most important problems in plant-wide optimization. In this article, first, a stochastic programming model with uniform distribution assumptio...Abstract Production planning under uncertainty is considered as one of the most important problems in plant-wide optimization. In this article, first, a stochastic programming model with uniform distribution assumption is developed for refinery production planning under demand uncertainty, and then a hybrid programming model incorporating the linear programming model with the stochastic programming one by a weight factor is proposed. Subsequently, piecewise linear approximation functions are derived and applied to solve the hybrid programming model-under uniform distribution assumption. Case studies show that the linear approximation algorithm is effective to solve.the hybrid programming model, along with an error≤0.5% when the deviatiorgmean≤20%. The simulation results indicate that the hybrid programming model with an appropriate weight factor (0.1-0.2) can effectively improve the optimal operational strategies under demand uncertainty, achieving higher profit than the linear programming model and the stochastic programming one with about 1.3% and 0.4% enhancement, respectavely.展开更多
Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are present...Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.展开更多
New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebr...New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.展开更多
In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPS...In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.展开更多
In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current ...In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.展开更多
This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators ...This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.展开更多
A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking prob...A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.展开更多
In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective...In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective programming and its saddle point theorem about cone efficient solution. We set up Mond-Weir type duality and Craven type duality for nonsmooth multiobjective programming with generalized essentially convex functions, and prove them.展开更多
This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method...This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are establish...In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are established under this kind of generalized convex functions. Our results generalize the ones obtained by Preda[J Math Anal Appl, 288(2003) 365-382].展开更多
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
基金The financial support provided by the Project of National Natural Science Foundation of China(U22A20415,21978256,22308314)“Pioneer”and“Leading Goose”Research&Development Program of Zhejiang(2022C01SA442617)。
文摘Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales.
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金supported in part by the National Key Reseanch and Development Program of China(2018AAA0101502,2018YFB1702300)in part by the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)in part by the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles。
文摘This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.
文摘The structure of the optimal solution set is derived for linear fractional programming with the representation theorem of polyhedral sets. Based on an adaptation of the convex simplex method credited to Gilmore and Gomory, we give the uniqueness condition of optimal solution and the computational procedures to find all optimal solutions if the uniqueness condition is not satisfied. Finally, an illustrative example is also given.
基金Supported by the Research Foundation of Jinan University(04SKZD01).
文摘In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.
基金supported by National Natural Science Foundation of China(61100159,61233007)National High Technology Research and Development Program of China(863 Program)(2011AA040103)+2 种基金Foundation of Chinese Academy of Sciences(KGCX2-EW-104)Financial Support of the Strategic Priority Research Program of Chinese Academy of Sciences(XDA06021100)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation,of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Grid Energy Management System for Micro-smart Grid
基金the Specialized Research Fund for Doctoral Program of Higher Education of China(20060003087)
文摘Abstract Production planning under uncertainty is considered as one of the most important problems in plant-wide optimization. In this article, first, a stochastic programming model with uniform distribution assumption is developed for refinery production planning under demand uncertainty, and then a hybrid programming model incorporating the linear programming model with the stochastic programming one by a weight factor is proposed. Subsequently, piecewise linear approximation functions are derived and applied to solve the hybrid programming model-under uniform distribution assumption. Case studies show that the linear approximation algorithm is effective to solve.the hybrid programming model, along with an error≤0.5% when the deviatiorgmean≤20%. The simulation results indicate that the hybrid programming model with an appropriate weight factor (0.1-0.2) can effectively improve the optimal operational strategies under demand uncertainty, achieving higher profit than the linear programming model and the stochastic programming one with about 1.3% and 0.4% enhancement, respectavely.
文摘Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.
基金Supported by the NSF of Shaanxi Provincial Educational Department(06JK152)
文摘New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.
文摘In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.
基金Supported by the National Natural Science Foundation of China(11971433)First Class Discipline of Zhe-jiang-A(Zhejiang Gongshang University-Statistics,1020JYN4120004G-091),Graduate Scientic Research and Innovation Foundation of Zhejiang Gongshang University.
文摘In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.
基金Supported by Chongqing Key Lab. of Operations Research and System Engineering
文摘This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.
基金supported by the National Natural Science Foundation of China(Grant Nos.61034002,61233001,61273140,61304086,and 61374105)the Beijing Natural Science Foundation,China(Grant No.4132078)
文摘A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.
文摘In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective programming and its saddle point theorem about cone efficient solution. We set up Mond-Weir type duality and Craven type duality for nonsmooth multiobjective programming with generalized essentially convex functions, and prove them.
基金supported in part by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2018ZCX22)
文摘This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
基金Foundation item: Supported by Hunan Provincial Natural Science Foundation of China(05JJ40103) Supported by Soft Science Research Fund of Hunan Province(2006ZK3028) Supported by Scientific Research Fund of Hunan Provincial Education Department(105B0707, 08C470)
文摘In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are established under this kind of generalized convex functions. Our results generalize the ones obtained by Preda[J Math Anal Appl, 288(2003) 365-382].