With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Proble...With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Problems such as imperfect facilities and backward control methods are com-mon in the urban drainage network systems in China.Efficient drainage not only strengthens infrastructure such as rain and sewage diversion,pollution source monitoring,transportation,drainage and storage but also urgently needs technical means to monitor and optimize production and operation.Aiming at the optimal control of single-stage pumping stations and the coordinated control between two-stage pumping stations,this paper studies the modelling and optimal control of drainage network systems.Based on the Long Short Term Memory(LSTM)water level prediction model of the sewage pumping stations,and then based on the mechanism analysis of drainage pipe network,the factors that may cause the water level change of pumping station are obtained.Grey correlation analysis is carried out on these influencing factors,and the prediction model is established by taking the factors with a high correlation degree as input.The research results show that compared with the traditional prediction model,the LSTM model not only has higher prediction accuracy but also has better inflection point tracking ability.展开更多
In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that can...In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that cannot afford to take actions to mitigate the challenges of load shedding are severely inconvenienced as they have to reschedule their demand involuntarily.This study presents optimal strategies to guide households in determining suitable scheduling and sizing solutions for solar home systems to mitigate the inconvenience experienced by residents due to load shedding.To start with,we predict the load shedding stages that are used as input for the optimal strategies by using the K-Nearest Neighbour(KNN)algorithm.Based on an accurate forecast of the future load shedding patterns,we formulate the residents’inconvenience and the loss of power supply probability during load shedding as the objective function.When solving the multi-objective optimisation problem,four different strategies to fight against load shedding are identified,namely(1)optimal home appliance scheduling(HAS)under load shedding;(2)optimal HAS supported by solar panels;(3)optimal HAS supported by batteries,and(4)optimal HAS supported by the solar home system with both solar panels and batteries.Among these strategies,appliance scheduling with an optimally sized 9.6 kWh battery and a 2.74 kWp panel array of five 550 Wp panels,eliminates the loss of power supply probability and reduces the inconvenience by 92%when tested under the South African load shedding cases in 2023.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti...This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.展开更多
文摘With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Problems such as imperfect facilities and backward control methods are com-mon in the urban drainage network systems in China.Efficient drainage not only strengthens infrastructure such as rain and sewage diversion,pollution source monitoring,transportation,drainage and storage but also urgently needs technical means to monitor and optimize production and operation.Aiming at the optimal control of single-stage pumping stations and the coordinated control between two-stage pumping stations,this paper studies the modelling and optimal control of drainage network systems.Based on the Long Short Term Memory(LSTM)water level prediction model of the sewage pumping stations,and then based on the mechanism analysis of drainage pipe network,the factors that may cause the water level change of pumping station are obtained.Grey correlation analysis is carried out on these influencing factors,and the prediction model is established by taking the factors with a high correlation degree as input.The research results show that compared with the traditional prediction model,the LSTM model not only has higher prediction accuracy but also has better inflection point tracking ability.
基金supported by National Key R&D Program of China(Grant No.2021YFE0199000)National Natural Science Foundation of China(Grant No.62133015)+1 种基金National Research Foundation China/South Africa Research Cooperation Programme with Grant No.148762Royal Academy of Engineering Transforming Systems through Partnership grant scheme with reference No.TSP2021\100016.
文摘In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that cannot afford to take actions to mitigate the challenges of load shedding are severely inconvenienced as they have to reschedule their demand involuntarily.This study presents optimal strategies to guide households in determining suitable scheduling and sizing solutions for solar home systems to mitigate the inconvenience experienced by residents due to load shedding.To start with,we predict the load shedding stages that are used as input for the optimal strategies by using the K-Nearest Neighbour(KNN)algorithm.Based on an accurate forecast of the future load shedding patterns,we formulate the residents’inconvenience and the loss of power supply probability during load shedding as the objective function.When solving the multi-objective optimisation problem,four different strategies to fight against load shedding are identified,namely(1)optimal home appliance scheduling(HAS)under load shedding;(2)optimal HAS supported by solar panels;(3)optimal HAS supported by batteries,and(4)optimal HAS supported by the solar home system with both solar panels and batteries.Among these strategies,appliance scheduling with an optimally sized 9.6 kWh battery and a 2.74 kWp panel array of five 550 Wp panels,eliminates the loss of power supply probability and reduces the inconvenience by 92%when tested under the South African load shedding cases in 2023.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Thailand Research Fund (Grant #MRG5480176)National Research University Project of Thailand Office of Higher Education Commission
文摘This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.