期刊文献+
共找到5,566篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal urban EV charging station site selection and capacity determination considering comprehensive benefits of vehicle-station-grid
1
作者 Hongwei Li Yufeng Song +4 位作者 Jiuding Tan Yi Cui Shuaibing Li Yongqiang Kang Haiying Dong 《iEnergy》 2024年第3期162-174,共13页
This paper presents an optimization model for the location and capacity of electric vehicle(EV)charging stations.The model takes the multiple factors of the“vehicle-station-grid”system into account.Then,ArcScene is ... This paper presents an optimization model for the location and capacity of electric vehicle(EV)charging stations.The model takes the multiple factors of the“vehicle-station-grid”system into account.Then,ArcScene is used to couple the road and power grid models and ensure that the coupling system is strictly under the goal of minimizing the total social cost,which includes the operator cost,user charging cost,and power grid loss.An immune particle swarm optimization algorithm(IPSOA)is proposed in this paper to obtain the optimal coupling strategy.The simulation results show that the algorithm has good convergence and performs well in solving multi-modal problems.It also balances the interests of users,operators,and the power grid.Compared with other schemes,the grid loss cost is reduced by 11.1%and 17.8%,and the total social cost decreases by 9.96%and 3.22%. 展开更多
关键词 EVS charging station site selection and capacity determination ArcScene immune particle swarm optimization algorithm(IPSOA) road electrical coupling
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
2
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
3
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
4
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
下载PDF
Possible effects of selecting different station distributions in the optimal sequence estimation method
5
作者 Hao Ding 《Geodesy and Geodynamics》 EI CSCD 2024年第6期554-567,共14页
Since the inception of the optimal sequence estimation (OSE) method,various research teams have substantiated its efficacy as the optimal stacking technique for handling array data,leading to its successful applicatio... Since the inception of the optimal sequence estimation (OSE) method,various research teams have substantiated its efficacy as the optimal stacking technique for handling array data,leading to its successful application in numerous geoscience studies.Nevertheless,concerns persist regarding the potential impact of aliasing resulting from the choice of distinct station distributions on the outcomes derived from OSE.In this investigation,I employ theoretical deduction and experimental analysis to elucidate the reasons behind the immunity of the Y_(l'm')-related common signal obtained through OSE to variations in station distribution selection.The primary objective of OSE is also underscored,i.e.,to restore/strip a Y_(l'm')-related common periodic signal from various stations.Furthermore,I provide additional clarification that the‘Y_(l'm')-related common signal’and the‘Y_(l'm')-related equivalent excitation sequence’are distinct concepts.These analyses will facilitate the utilization of the OSE technique by other researchers in investigating intriguing geophysical phenomena and attaining sound explanations. 展开更多
关键词 optimal sequence estimation Station selection GPS
下载PDF
A Feature Selection Method Based on Hybrid Dung Beetle Optimization Algorithm and Slap Swarm Algorithm
6
作者 Wei Liu Tengteng Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2979-3000,共22页
Feature Selection(FS)is a key pre-processing step in pattern recognition and data mining tasks,which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models.In... Feature Selection(FS)is a key pre-processing step in pattern recognition and data mining tasks,which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models.In recent years,meta-heuristic algorithms have been widely used in FS problems,so a Hybrid Binary Chaotic Salp Swarm Dung Beetle Optimization(HBCSSDBO)algorithm is proposed in this paper to improve the effect of FS.In this hybrid algorithm,the original continuous optimization algorithm is converted into binary form by the S-type transfer function and applied to the FS problem.By combining the K nearest neighbor(KNN)classifier,the comparative experiments for FS are carried out between the proposed method and four advanced meta-heuristic algorithms on 16 UCI(University of California,Irvine)datasets.Seven evaluation metrics such as average adaptation,average prediction accuracy,and average running time are chosen to judge and compare the algorithms.The selected dataset is also discussed by categorizing it into three dimensions:high,medium,and low dimensions.Experimental results show that the HBCSSDBO feature selection method has the ability to obtain a good subset of features while maintaining high classification accuracy,shows better optimization performance.In addition,the results of statistical tests confirm the significant validity of the method. 展开更多
关键词 Feature selection dung beetle optimization KNN transfer function HBCSSDBO
下载PDF
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
7
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper HIGH-DIMENSIONAL feature selection equilibrium optimizer MULTI-OBJECTIVE
下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
8
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
下载PDF
Constrained Multi-Objective Optimization With Deep Reinforcement Learning Assisted Operator Selection
9
作者 Fei Ming Wenyin Gong +1 位作者 Ling Wang Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期919-931,共13页
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev... Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs. 展开更多
关键词 Constrained multi-objective optimization deep Qlearning deep reinforcement learning(DRL) evolutionary algorithms evolutionary operator selection
下载PDF
Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm
10
作者 Mutasem K.Alsmadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期5175-5200,共26页
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ... Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data. 展开更多
关键词 Lung cancer gene selection improved arithmetic optimization algorithm and machine learning
下载PDF
Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN
11
作者 Imtiaz Ahmad Tariq Hussain +3 位作者 Babar Shah Altaf Hussain Iqtidar Ali Farman Ali 《Computers, Materials & Continua》 SCIE EI 2024年第6期3585-3629,共45页
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe... Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks. 展开更多
关键词 Wireless sensor network cluster head selection low energy adaptive clustering hierarchy accelerated particle swarm optimization
下载PDF
Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem
12
作者 Sana Jawarneh 《Intelligent Automation & Soft Computing》 2024年第3期511-525,共15页
High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classifi... High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods. 展开更多
关键词 Arithmetic optimization algorithm CLASSIFICATION feature selection problem optimization
下载PDF
Hybrid distributed feature selection using particle swarm optimization-mutual information
13
作者 Khumukcham Robindro Sanasam Surjalata Devi +3 位作者 Urikhimbam Boby Clinton Linthoingambi Takhellambam Yambem Ranjan Singh Nazrul Hoque 《Data Science and Management》 2024年第1期64-73,共10页
Feature selection(FS)is a data preprocessing step in machine learning(ML)that selects a subset of relevant and informative features from a large feature pool.FS helps ML models improve their predictive accuracy at low... Feature selection(FS)is a data preprocessing step in machine learning(ML)that selects a subset of relevant and informative features from a large feature pool.FS helps ML models improve their predictive accuracy at lower computational costs.Moreover,FS can handle the model overfitting problem on a high-dimensional dataset.A major problem with the filter and wrapper FS methods is that they consume a significant amount of time during FS on high-dimensional datasets.The proposed“HDFS(PSO-MI):hybrid distribute feature selection using particle swarm optimization-mutual information(PSO-MI)”,is a PSO-based hybrid method that can overcome the problem mentioned above.This method hybridizes the filter and wrapper techniques in a distributed manner.A new combiner is also introduced to merge the effective features selected from multiple data distributions.The effectiveness of the proposed HDFS(PSO-MI)method is evaluated using five ML classifiers,i.e.,logistic regression(LR),k-NN,support vector machine(SVM),decision tree(DT),and random forest(RF),on various datasets in terms of accuracy and Matthew’s correlation coefficient(MCC).From the experimental analysis,we observed that HDFS(PSO-MI)method yielded more than 98%,95%,92%,90%,and 85%accuracy for the unbalanced,kidney disease,emotions,wafer manufacturing,and breast cancer datasets,respectively.Our method shows promising results comapred to other methods,such as mutual information,gain ratio,Spearman correlation,analysis of variance(ANOVA),Pearson correlation,and an ensemble feature selection with ranking method(EFSRank). 展开更多
关键词 Feature selection Particle swarm optimization(PSO) Classification ACCURACY
下载PDF
Application of fuzzy optimal selection of similar slopes to the evaluation of slope stability 被引量:8
14
作者 王旭华 陈守煜 +1 位作者 唐列宪 张厚全 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期415-418,共4页
The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimizat... The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method. 展开更多
关键词 fuzzy optimal selection of similar slopes relative membership degree object sample source sample
下载PDF
AHP-Based Optimal Selection of Garment Sizes for Online Shopping 被引量:2
15
作者 许轶超 齐洁 丁永生 《Journal of Donghua University(English Edition)》 EI CAS 2007年第2期222-225,共4页
Garment online shopping has been accepted by more and more consumers in recent years. In online shopping, a buyer only chooses the garment size judged by his own experience without trying-on, so the selected garment m... Garment online shopping has been accepted by more and more consumers in recent years. In online shopping, a buyer only chooses the garment size judged by his own experience without trying-on, so the selected garment may not be the fittest one for the buyer due to the variety of body's figures. Thus, we propose a method of optimal selection of garment sizes for online shopping based on Analytic Hierarchy Process (AHP). The hierarchical structure model for optimal selection of garment sizes is structured and the fittest garment for a buyer is found by calculating the matching degrees between individual's measurements and the corresponding key-part values of ready-to-wear clothing sizes. In order to demonstrate its feasibility, we provide an example of selecting the fittest sizes of men's bottom. The result shows that the proposed method is useful in online clothing sales application. 展开更多
关键词 optimal selection of garment sizes analytichierarchy process apparel online shopping
下载PDF
Optimal stopping investment in a logarithmic utility-based portfolio selection problem 被引量:1
16
作者 Xun Li Xianping Wu Wenxin Zhou 《Financial Innovation》 2017年第1期433-442,共10页
Background:In this paper,we study the right time for an investor to stop the investment over a given investment horizon so as to obtain as close to the highest possible wealth as possible,according to a Logarithmic ut... Background:In this paper,we study the right time for an investor to stop the investment over a given investment horizon so as to obtain as close to the highest possible wealth as possible,according to a Logarithmic utility-maximization objective involving the portfolio in the drift and volatility terms.The problem is formulated as an optimal stopping problem,although it is non-standard in the sense that the maximum wealth involved is not adapted to the information generated over time.Methods:By delicate stochastic analysis,the problem is converted to a standard optimal stopping one involving adapted processes.Results:Numerical examples shed light on the efficiency of the theoretical results.Conclusion:Our investment problem,which includes the portfolio in the drift and volatility terms of the dynamic systems,makes the problem including multi-dimensional financial assets more realistic and meaningful. 展开更多
关键词 optimal stopping Path-dependent Stochastic differential equation(SDE) Time-change Portfolio selection
下载PDF
Rider Optimization Algorithm Based Optimal Cloud Server Selection in E-Learning
17
作者 R.Soundhara Raja Pandian C.Christopher Columbus 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1749-1762,共14页
Currently,e-learning is one of the most prevalent educational methods because of its need in today’s world.Virtual classrooms and web-based learning are becoming the new method of teaching remotely.The students exper... Currently,e-learning is one of the most prevalent educational methods because of its need in today’s world.Virtual classrooms and web-based learning are becoming the new method of teaching remotely.The students experience a lack of access to resources commonly the educational material.In remote loca-tions,educational institutions face significant challenges in accessing various web-based materials due to bandwidth and network infrastructure limitations.The objective of this study is to demonstrate an optimization and queueing tech-nique for allocating optimal servers and slots for users to access cloud-based e-learning applications.The proposed method provides the optimization and queue-ing algorithm for multi-server and multi-city constraints and considers where to locate the best servers.For optimal server selection,the Rider Optimization Algo-rithm(ROA)is utilized.A performance analysis based on time,memory and delay was carried out for the proposed methodology in comparison with the exist-ing techniques.The proposed Rider Optimization Algorithm is compared to Par-ticle Swarm Optimization(PSO),Genetic Algorithm(GA)and Firefly Algorithm(FFA),the proposed method is more suitable and effective because the other three algorithms drop in local optima and are only suitable for small numbers of user requests.Thus the proposed method outweighs the conventional techniques by its enhanced performance over them. 展开更多
关键词 optimization QUEUING slot selection server selection rider optimization algorithm
下载PDF
Optimal Selection Model of Equipment Design Scheme Based on Set Pair Analysis
18
作者 赵劲松 康建设 +1 位作者 张春润 贺宇 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期982-985,共4页
Selecting the optimal one from similar schemes is a paramount work in equipment design.In consideration of similarity of schemes and repetition of characteristic indices,the theory of set pair analysis(SPA)is proposed... Selecting the optimal one from similar schemes is a paramount work in equipment design.In consideration of similarity of schemes and repetition of characteristic indices,the theory of set pair analysis(SPA)is proposed,and then an optimal selection model is established.In order to improve the accuracy and flexibility,the model is modified by the contribution degree.At last,this model has been validated by an example,and the result demonstrates the method is feasible and valuable for practical usage. 展开更多
关键词 set pair analysis(SPA) equipment design scheme optimal selection model nearness degree
下载PDF
Optimal Route Selection Method Based on Vague Sets
19
作者 郭瑞 杜利敏 王淳 《Chinese Quarterly Journal of Mathematics》 2015年第1期130-136,共7页
Optimal route selection is an important function of vehicle trac flow guidance system. Its core is to determine the index weight for measuring the route merits and to determine the evaluation method for selecting rout... Optimal route selection is an important function of vehicle trac flow guidance system. Its core is to determine the index weight for measuring the route merits and to determine the evaluation method for selecting route. In this paper, subjective weighting method which relies on driver preference is used to determine the weight and the paper proposes the multi-criteria weighted decision method based on vague sets for selecting the optimal route. Examples show that, the usage of vague sets to describe route index value can provide more decision-making information for route selection. 展开更多
关键词 trafflc guidance optimal route selection vague sets multi-criteria fuzzy decision-making
下载PDF
Reliability Evaluation Optimal Selection Model of Component-Based System
20
作者 Guo Yong Wan Tian Tian +1 位作者 Ma Pei Jun Su Xiao Hong 《Journal of Software Engineering and Applications》 2011年第7期433-441,共9页
If the components in a component-based software system come from different sources, the characteristics of the components may be different. Therefore, evaluating the reliability of a component-based system with a fixe... If the components in a component-based software system come from different sources, the characteristics of the components may be different. Therefore, evaluating the reliability of a component-based system with a fixed model for all components will not be reasonable. To solve this problem, this paper combines a single reliability growth model with an architecture-based reliability model, and proposes an optimal selecting approach. First, the most appropriate model of each component is selected according to the historical reliability data of the component, so that the evaluation deviation is the smallest. Then, system reliability is evaluated according to both the relationships among components and the using frequency of each component. As the approach takes into account the historical data and the using frequency of each component, the evaluation and prediction results are more accurate than those of using a single model. 展开更多
关键词 optimal EVALUATION Approach LIKELIHOOD Estimation Reliability EVALUATION COMPONENT-BASED SYSTEM optimal selection Model (OSM)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部