In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ...In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.展开更多
A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optima...A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.展开更多
Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a...Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in...In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.展开更多
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we ...Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.展开更多
The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op...The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.展开更多
Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently...Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently,Shao et al.presented a novel excited state intramolecular proton transfer(ESIPT)system BrA-HBI,demonstrating an emission quantum yield of up to 50%[Adv.Funct.Mater.32,2201256(2022)].However,many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations.For instance,what causes the activation of TADF from the Keto^(*) tautomer and leads to fluorescence quenching in the Enol^(*)form?Herein,we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals.Our findings reveal that ESIPT occurs in the BrA-HBI molecule.Moreover,we have disclosed the reason for the fluorescence quenching of the Enol^(*)form and determined that the T_(2)state plays a dominant role in the TADF phenomenon.In addition,double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI.These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes,but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
The power system,as an energy hub,plays a crucial role in the transformation of energy production and consumption.On July 19,2023,the International Energy Agency(IEA)released a Global Electricity Market Report for 202...The power system,as an energy hub,plays a crucial role in the transformation of energy production and consumption.On July 19,2023,the International Energy Agency(IEA)released a Global Electricity Market Report for 2023-2024.This report indicates that the development of the world’s energy production is rapidly moving towards the critical point where the proportion of electricity generated from renewable sources surpasses that from non-renewable sources.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of th...With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
基金supported by the National Natural Science Foundation of China(6110420961503126)
文摘In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.
基金Projects(61203234,61135001,61075029,61074179) supported by the National Natural Science Foundation of ChinaProject(20110491692) supported by the Postdoctoral Science Foundation of China
文摘A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.
基金supported by the National Key R&D Program of China(2022ZD0119604)the National Natural Science Foundation of China(NSFC),(62222308,62173181,62221004)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220139)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)。
文摘Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander,Colombia,project 3704.
文摘In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
基金supported by the National Nat-ural Science Foundation of China(61873215,62103342)the Natural Science Foundation of Sichuan Province(2022NSFSC0470,2022NSFSC0892).
文摘Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.
文摘The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.
基金supported by the National Natural Science Foundation of China(Grant No.12174149)。
文摘Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently,Shao et al.presented a novel excited state intramolecular proton transfer(ESIPT)system BrA-HBI,demonstrating an emission quantum yield of up to 50%[Adv.Funct.Mater.32,2201256(2022)].However,many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations.For instance,what causes the activation of TADF from the Keto^(*) tautomer and leads to fluorescence quenching in the Enol^(*)form?Herein,we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals.Our findings reveal that ESIPT occurs in the BrA-HBI molecule.Moreover,we have disclosed the reason for the fluorescence quenching of the Enol^(*)form and determined that the T_(2)state plays a dominant role in the TADF phenomenon.In addition,double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI.These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes,but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
文摘The power system,as an energy hub,plays a crucial role in the transformation of energy production and consumption.On July 19,2023,the International Energy Agency(IEA)released a Global Electricity Market Report for 2023-2024.This report indicates that the development of the world’s energy production is rapidly moving towards the critical point where the proportion of electricity generated from renewable sources surpasses that from non-renewable sources.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by the Key Technology Projects of the China Southern Power Grid Corporation(STKJXM20200059)the Key Support Project of the Joint Fund of the National Natural Science Foundation of China(U22B20123)。
文摘With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.