期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural Parameter Optimization of Multilayer Conductors in HTS Cable 被引量:1
1
作者 Yan Mao Jie Qiu +6 位作者 Xin-Ying Liu Zhi-Xuan Wang Shu-Hong Wang Jian-Guo Zhu You-Guang Guo Zhi-Wei Lin Jian-Xun Jin 《Journal of Electronic Science and Technology of China》 2008年第2期112-118,共7页
In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm opti... In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality. 展开更多
关键词 Current distribution design for sixsigma (DFSS) genetic algorithm (GA) high temperature superconducting (HTS) cable particle swarm optimization (PSO) structural parameter optimization.
下载PDF
Drilling Power Consumption and Soil Conveying Volume Performances of Lunar Sampling Auger 被引量:10
2
作者 TIAN Ye TANG Dewei +2 位作者 DENG Zongquan JIANG Shengyuan QUAN Qiquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期451-459,共9页
The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization res... The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization research on soil conveying volume and power consumption models in auger structure design. To provide the drilled object, the simulation lunar soil, whose physical and mechanical property is the same as the real soil, is made by reducing soil void ratio. The models are formulated to analyze the influence of auger structure parameters on power consumption and soil conveying volume. To obtain the optimized structure parameters of auger, the multi-objective optimization functions of the maximum soil conveying volume and minimum power consumption are developed. To verify the correctness of the models, the performances of different augers drilling simulation soil are tested. The test results demonstrate that the power consumption of optimized auger is the lowest both in theory and test, and the experimental results of soil conveying volume are in agreement with theoretical analysis. Consequently, a new method for designing a lunar sampling auger is proposed which includes the models of soil conveying volume and transportation power consumption, the optimization of structure parameters and the comparison tests. This method provides a reference for sampling auger designing of the Chinese Lunar Sample Mission. 展开更多
关键词 lunar sampling optimal design auger soil conveying volume model structure parameter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部