A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In...A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In this study,a hybrid feature selection model was developed based on ant colony opti-mization(ACO)and k-nearest neighbor(kNN)classifier to investigate the rela-tionship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing(UNOS).The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’functional status(i.e.,quality of life)after lung transplantation.The efficacy of the proposed model was verified using 3,684 records and 118 input features from the UNOS.The developed approach examined the reliability and validity of the lung allocation process.The results are promising regarding accuracy prediction to be 91.3%and low computational time,along with better decision capabilities,emphasizing the potential for automatic classification of the lung and other organs allocation pro-cesses.In addition,the proposed model recommends a new perspective on how medical experts and clinicians respond to uncertain and challenging lung alloca-tion strategies.Having such ACO-kNN model,a medical professional can sum-marize information through the proposed method and make decisions for the upcoming transplants to allocate the donor organ.展开更多
In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In ...In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.展开更多
Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary ver...Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method,resulting in suboptimal solutions that hinder diagnosis and prediction accuracy.This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm(IBQANA)for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms.The proposed IBQANA’s contributions include the Hybrid Binary Operator(HBO)and the Distance-based Binary Search Strategy(DBSS).HBO is designed to convert continuous values into binary solutions,even for values outside the[0,1]range,ensuring accurate binary mapping.On the other hand,DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence.By combining exploration and exploitation phases based on an adaptive probability function,DBSS effectively avoids local optima.The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets,with feature numbers ranging from 8 to 10,509.IBQANA's effectiveness is evaluated regarding the accuracy,fitness,and selected features and compared with seven binary metaheuristic algorithms.Furthermore,IBQANA is utilized to detect COVID-19.The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets.The proposed method presents a promising solution to the FSS problem in medical data preprocessing.展开更多
The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or schedu...The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem.展开更多
Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated t...Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated that the performance of a fuzzy relation equation is strongly related to a subset of fuzzy rules obtained by removing those without significant relevance.In this study,we establish a novel framework of developing granular fuzzy relation equations that concerns the determination of an optimal subset of fuzzy rules.The subset of rules is selected by maximizing their performance of the obtained solutions.The originality of this study is conducted in the following ways.Starting with developing granular fuzzy relation equations,an interval-valued fuzzy relation is determined based on the selected subset of fuzzy rules(the subset of rules is transformed to interval-valued fuzzy sets and subsequently the interval-valued fuzzy sets are utilized to form interval-valued fuzzy relations),which can be used to represent the fuzzy relation of the entire rule base with high performance and efficiency.Then,the particle swarm optimization(PSO)is implemented to solve a multi-objective optimization problem,in which not only an optimal subset of rules is selected but also a parameterεfor specifying a level of information granularity is determined.A series of experimental studies are performed to verify the feasibility of this framework and quantify its performance.A visible improvement of particle swarm optimization(about 78.56%of the encoding mechanism of particle swarm optimization,or 90.42%of particle swarm optimization with an exploration operator)is gained over the method conducted without using the particle swarm optimization algorithm.展开更多
文摘A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In this study,a hybrid feature selection model was developed based on ant colony opti-mization(ACO)and k-nearest neighbor(kNN)classifier to investigate the rela-tionship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing(UNOS).The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’functional status(i.e.,quality of life)after lung transplantation.The efficacy of the proposed model was verified using 3,684 records and 118 input features from the UNOS.The developed approach examined the reliability and validity of the lung allocation process.The results are promising regarding accuracy prediction to be 91.3%and low computational time,along with better decision capabilities,emphasizing the potential for automatic classification of the lung and other organs allocation pro-cesses.In addition,the proposed model recommends a new perspective on how medical experts and clinicians respond to uncertain and challenging lung alloca-tion strategies.Having such ACO-kNN model,a medical professional can sum-marize information through the proposed method and make decisions for the upcoming transplants to allocate the donor organ.
基金The National Natural Science Foundation of China(No.51036002,51076027)the Key Project of Ministry of Education of China(No.108060)
文摘In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.
文摘Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method,resulting in suboptimal solutions that hinder diagnosis and prediction accuracy.This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm(IBQANA)for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms.The proposed IBQANA’s contributions include the Hybrid Binary Operator(HBO)and the Distance-based Binary Search Strategy(DBSS).HBO is designed to convert continuous values into binary solutions,even for values outside the[0,1]range,ensuring accurate binary mapping.On the other hand,DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence.By combining exploration and exploitation phases based on an adaptive probability function,DBSS effectively avoids local optima.The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets,with feature numbers ranging from 8 to 10,509.IBQANA's effectiveness is evaluated regarding the accuracy,fitness,and selected features and compared with seven binary metaheuristic algorithms.Furthermore,IBQANA is utilized to detect COVID-19.The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets.The proposed method presents a promising solution to the FSS problem in medical data preprocessing.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0308700)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)。
文摘The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem.
基金supported by the National Natural Sci-ence Foundation of China(62006184,62076189,61873277).
文摘Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated that the performance of a fuzzy relation equation is strongly related to a subset of fuzzy rules obtained by removing those without significant relevance.In this study,we establish a novel framework of developing granular fuzzy relation equations that concerns the determination of an optimal subset of fuzzy rules.The subset of rules is selected by maximizing their performance of the obtained solutions.The originality of this study is conducted in the following ways.Starting with developing granular fuzzy relation equations,an interval-valued fuzzy relation is determined based on the selected subset of fuzzy rules(the subset of rules is transformed to interval-valued fuzzy sets and subsequently the interval-valued fuzzy sets are utilized to form interval-valued fuzzy relations),which can be used to represent the fuzzy relation of the entire rule base with high performance and efficiency.Then,the particle swarm optimization(PSO)is implemented to solve a multi-objective optimization problem,in which not only an optimal subset of rules is selected but also a parameterεfor specifying a level of information granularity is determined.A series of experimental studies are performed to verify the feasibility of this framework and quantify its performance.A visible improvement of particle swarm optimization(about 78.56%of the encoding mechanism of particle swarm optimization,or 90.42%of particle swarm optimization with an exploration operator)is gained over the method conducted without using the particle swarm optimization algorithm.