To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ...To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design.展开更多
University campus is the most important place for life, study, activity and experience of contemporary college students. It is helpful for students to survive and develop to create the topic space of campus. Taking th...University campus is the most important place for life, study, activity and experience of contemporary college students. It is helpful for students to survive and develop to create the topic space of campus. Taking the topic space of college campuses in Lishui City of Zhejiang Province as an example, the current situations are analyzed through questionnaire survey and field visit. The results show that uni- versity campus space needs a clear topic; the demands are generally large for the topics of exchange and communication, learning and thinking, sports and leisure in all kinds of space; the creation of these types of topic spaces should focus on the peaceful environment, beautiful scenery, privacy of the space and WlFI coverage.展开更多
Based on the concept of structural passive control,a new type of slit shear wall,with improved seismic performance when compared to an ordinary solid shear wall,was proposed by the authors in 1996.The idea has been ve...Based on the concept of structural passive control,a new type of slit shear wall,with improved seismic performance when compared to an ordinary solid shear wall,was proposed by the authors in 1996.The idea has been verified by a series of pseudo-static and dynamic tests.In this paper a macro numerical model is developed for the wall element and the energy dissipation device.Then,nonlinear time history analysis is carried out for a 10-story slit shear wall model tested on a shaking table.Furthermore,the seismic input energy and the individual energy dissipated by the components are calculated by a method based on Newmark-β assumptions for this shear wall model,and the advantages of this shear wall are further demonstrated by the calculation results from the viewpoint of energy.Finally,according to the seismic damage criterion on the basis of plastic accumulative energy and maximum response,the optimal analysis is carried out to select design parameters for the energy dissipation device.展开更多
Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysi...Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysis systems. Specifically, an estimation of correlation scales that can improve effectively the accuracy of Ar- go objective analysis has been developed. This method can automatically adapt to the gradient change of a variable and is referred to as "gradient-dependent correlation scale method". Its effect on the Argo objective analysis is verified theoretically with Gaussian pulse and spectrum analysis. The results of one-dimensional simulation experiment show that the gradient-dependent correlation scales can improve the adaptability of the objective analysis system, making it possible for the analysis scheme to fully absorb the shortwave information of observation in areas with larger oceanographic gradients. The new scheme is applied to the Argo data obiective analysis system in the Pacific Ocean. The results are obviously improved.展开更多
This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat tr...This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.展开更多
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction erro...Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.展开更多
Control parameter optimization is an efficient way to improve the endurance of underwater gliders(UGs),which influences their gliding efficiency and energy consumption.This paper analyzes the optimal matching between ...Control parameter optimization is an efficient way to improve the endurance of underwater gliders(UGs),which influences their gliding efficiency and energy consumption.This paper analyzes the optimal matching between the net buoyancy and the pitching angle and proposes a segmented control strategy of Petrel-L.The optimization of this strategy is established based on the gliding range model of UG,which is solved based on the approximate model,and the variations of the optimal control parameters with the hotel load are obtained.The optimization results indicate that the segmented control strategy can significantly increase the gliding range when the optimal matching between the net buoyancy and the pitching angle is reached,and the increase rate is influenced by the hotel load.The gliding range of the underwater glider can be increased by 10.47%at a hotel load of 0.5 W.The optimal matching analysis adopted in this study can be applied to other UGs to realize endurance improvement.展开更多
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the...In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the subsiding area. In this paper, taking Zhangfushan iron mine as an example, the ore body and the general layout are focused on the safety of backflling of mined-out area. Then, we use the ANSYS software to construct a three-dimensional(3D) model for the mining area in the Zhangfushan iron mine. According to the simulation results of the initial mining stages, the ore body is stoped step by step as suggested in the design. The stability of the backflling is back analyzed based on the monitored displacements, considering the stress distribution to optimize the stoping sequence. The simulations show that a reasonable stoping sequence can minimize the concentration of high compressive stress and ensure the safety of stoping of the ore body.展开更多
Intensive curing barn is an important component of flue-cured tobacco pro-duction in China, with progress made. However, problems stil exist, such as lower heat energy utilization efficiency and slow equipment update....Intensive curing barn is an important component of flue-cured tobacco pro-duction in China, with progress made. However, problems stil exist, such as lower heat energy utilization efficiency and slow equipment update. In the research, opti-mization ways of tobacco barn were analyzed in flue-cured tobacco production re-gions, and assessment was made on improvement effects, in order to provide refer-ences for highly-efficient and low-carbon development of curing barn.展开更多
The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named ...The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers.展开更多
This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
Wetland park is an important mode of wetland protection, meanwhile, construction of comprehensive index system has become the hotspot and keystone of the researches on Wetland Parks. Basing on different development st...Wetland park is an important mode of wetland protection, meanwhile, construction of comprehensive index system has become the hotspot and keystone of the researches on Wetland Parks. Basing on different development stages, this paper firstly divided the Wetland Parks into three categories, including the start-up stage, the development stage and the refinement stage. And then screened and identified the direction and keypoints of comprehensive evaluation for wetland parks in different development stages using expert scoring, questionnaire and analytic hierarchy process(AHP).展开更多
The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different t...The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different temperatures and chemical potentials. According to the Landauer formula the expressions for the heat current, the cooling rate and the coefficient of performance (COP) are derived analytically. The performance characteristic curves of the cooling rate versus the coefficient of performance are plotted with numerical calculation. The optimal regions of the cooling rate and the COP are determined. Moreover, we optimize the cooling rate and the COP with respect to the position of energy level of the right quantum dot, respectively. The influence of the width of energy level and the temperature ratio on performance of the three-terminal thermoelectric refrigerator is analyzed. Lastly, when the width of energy level is small enough, the optimal performance of the refrigerator is discussed in detail.展开更多
Lysidice rhodostegia is a kind of evergreen tall arbor, belonging to Lysidice , Caesalpiniaceae. Because of luxuriant branches and leaves, beautiful flowers and bright colors, it has a certain greening effect and orna...Lysidice rhodostegia is a kind of evergreen tall arbor, belonging to Lysidice , Caesalpiniaceae. Because of luxuriant branches and leaves, beautiful flowers and bright colors, it has a certain greening effect and ornamental value. Moreover, the researchers also find that L. rhodostegia has rich medicinal effects that have not been developed yet. In this paper, the morphological characteristics, ecological habits, geographical distribution and main functions of L. rhodostegia are briefly described. Then, conventional planting technology of L. rhodostegia is analyzed, and the optimization strategy of planting and cultivation technology of L. rhodostegia is put forward. Finally, some prospects for the future development of L. rhodostegia industry is proposed. The research could lay a solid foundation for cultivating varieties of L. rhodostegia with excellent characters.展开更多
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke...Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.展开更多
Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful ...When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system.展开更多
In this paper, a detailed thermodynamic analysis of the pure low-temperature waste heat recovery generation system is presented. The parameters affecting the system performance are compared to obtain the most signific...In this paper, a detailed thermodynamic analysis of the pure low-temperature waste heat recovery generation system is presented. The parameters affecting the system performance are compared to obtain the most significant ones; furthermore, parameter values are optimized for the largest power generating capability of the system. It is found that the most important parameters are inlet flue gas temperature, steam pressure and the pinch point temperature difference. There is an optimal superheated steam pressure value for giving the maximum generation power per unit flue gas. With the increase of inlet flue gas temperature, the generating power increases and the optimized steam pressure rises as well. However, with increase in pinch point temperature difference, the generating power decreases and the optimized steam pressure decreases as well. The theoretical calculation provides a theoretical basis for the parameters optimization in the design of the pure low-temperature waste heat recovery eeneration swtem展开更多
As the country has been placing greater emphasis on agricultural development,rural finance based on supply-side structural reform has achieved tremendous growth.However,investigations have found that the rural financi...As the country has been placing greater emphasis on agricultural development,rural finance based on supply-side structural reform has achieved tremendous growth.However,investigations have found that the rural financial market still has problems in its service modes,organizational systems,product innovation,and risk evaluation,thus requiring urgent attention.Therefore,this study analyzes and expounds on these problems from the aforementioned four aspects and proposes the following solutions:encourage the creation of agricultural service institutions,establish and improve the rural financial organization system,vigorously develop new rustic financial products,and strengthen the risk supervision and management of financial markets.Only in this way can the agricultural supply-side structural reform and the innovative development of rural finance be realized.展开更多
文摘To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design.
文摘University campus is the most important place for life, study, activity and experience of contemporary college students. It is helpful for students to survive and develop to create the topic space of campus. Taking the topic space of college campuses in Lishui City of Zhejiang Province as an example, the current situations are analyzed through questionnaire survey and field visit. The results show that uni- versity campus space needs a clear topic; the demands are generally large for the topics of exchange and communication, learning and thinking, sports and leisure in all kinds of space; the creation of these types of topic spaces should focus on the peaceful environment, beautiful scenery, privacy of the space and WlFI coverage.
文摘Based on the concept of structural passive control,a new type of slit shear wall,with improved seismic performance when compared to an ordinary solid shear wall,was proposed by the authors in 1996.The idea has been verified by a series of pseudo-static and dynamic tests.In this paper a macro numerical model is developed for the wall element and the energy dissipation device.Then,nonlinear time history analysis is carried out for a 10-story slit shear wall model tested on a shaking table.Furthermore,the seismic input energy and the individual energy dissipated by the components are calculated by a method based on Newmark-β assumptions for this shear wall model,and the advantages of this shear wall are further demonstrated by the calculation results from the viewpoint of energy.Finally,according to the seismic damage criterion on the basis of plastic accumulative energy and maximum response,the optimal analysis is carried out to select design parameters for the energy dissipation device.
基金The Marine Public Welfare Special Funds,the State Oceanic Administration of China under contract No.200705022the Technology Special Basic Work,the Ministry of Science and Technology under contract No.2012FY112300the Basic Scientific Research Special Funds of the Second Institute of Oceanography,the State Oceanic Administration of China under contract No.IT0904
文摘Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysis systems. Specifically, an estimation of correlation scales that can improve effectively the accuracy of Ar- go objective analysis has been developed. This method can automatically adapt to the gradient change of a variable and is referred to as "gradient-dependent correlation scale method". Its effect on the Argo objective analysis is verified theoretically with Gaussian pulse and spectrum analysis. The results of one-dimensional simulation experiment show that the gradient-dependent correlation scales can improve the adaptability of the objective analysis system, making it possible for the analysis scheme to fully absorb the shortwave information of observation in areas with larger oceanographic gradients. The new scheme is applied to the Argo data obiective analysis system in the Pacific Ocean. The results are obviously improved.
基金supported by the Ph.D.Indigenous Scheme of the Higher Education Commission of Pakistan(No.112-21674-2PS1-576)
文摘This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.
基金jointly supported by the National Key R&D Program of Chinathe National Natural Science Foundation of China (Grant Nos. 11902219 and 51721003)the Natural Science Foundation of Tianjin City (Grant No. 18JCJQJC46400)。
文摘Control parameter optimization is an efficient way to improve the endurance of underwater gliders(UGs),which influences their gliding efficiency and energy consumption.This paper analyzes the optimal matching between the net buoyancy and the pitching angle and proposes a segmented control strategy of Petrel-L.The optimization of this strategy is established based on the gliding range model of UG,which is solved based on the approximate model,and the variations of the optimal control parameters with the hotel load are obtained.The optimization results indicate that the segmented control strategy can significantly increase the gliding range when the optimal matching between the net buoyancy and the pitching angle is reached,and the increase rate is influenced by the hotel load.The gliding range of the underwater glider can be increased by 10.47%at a hotel load of 0.5 W.The optimal matching analysis adopted in this study can be applied to other UGs to realize endurance improvement.
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
文摘In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the subsiding area. In this paper, taking Zhangfushan iron mine as an example, the ore body and the general layout are focused on the safety of backflling of mined-out area. Then, we use the ANSYS software to construct a three-dimensional(3D) model for the mining area in the Zhangfushan iron mine. According to the simulation results of the initial mining stages, the ore body is stoped step by step as suggested in the design. The stability of the backflling is back analyzed based on the monitored displacements, considering the stress distribution to optimize the stoping sequence. The simulations show that a reasonable stoping sequence can minimize the concentration of high compressive stress and ensure the safety of stoping of the ore body.
文摘Intensive curing barn is an important component of flue-cured tobacco pro-duction in China, with progress made. However, problems stil exist, such as lower heat energy utilization efficiency and slow equipment update. In the research, opti-mization ways of tobacco barn were analyzed in flue-cured tobacco production re-gions, and assessment was made on improvement effects, in order to provide refer-ences for highly-efficient and low-carbon development of curing barn.
文摘The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers.
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.
基金National Natural Science Foundation(Project Number:41101080)Natural Science Foundation of Shandong Province(Project Number:ZR2014DQ028/ZR2015DM004)
文摘Wetland park is an important mode of wetland protection, meanwhile, construction of comprehensive index system has become the hotspot and keystone of the researches on Wetland Parks. Basing on different development stages, this paper firstly divided the Wetland Parks into three categories, including the start-up stage, the development stage and the refinement stage. And then screened and identified the direction and keypoints of comprehensive evaluation for wetland parks in different development stages using expert scoring, questionnaire and analytic hierarchy process(AHP).
基金Supported by the National Natural Science Foundation of China under Grant No 11365015
文摘The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different temperatures and chemical potentials. According to the Landauer formula the expressions for the heat current, the cooling rate and the coefficient of performance (COP) are derived analytically. The performance characteristic curves of the cooling rate versus the coefficient of performance are plotted with numerical calculation. The optimal regions of the cooling rate and the COP are determined. Moreover, we optimize the cooling rate and the COP with respect to the position of energy level of the right quantum dot, respectively. The influence of the width of energy level and the temperature ratio on performance of the three-terminal thermoelectric refrigerator is analyzed. Lastly, when the width of energy level is small enough, the optimal performance of the refrigerator is discussed in detail.
文摘Lysidice rhodostegia is a kind of evergreen tall arbor, belonging to Lysidice , Caesalpiniaceae. Because of luxuriant branches and leaves, beautiful flowers and bright colors, it has a certain greening effect and ornamental value. Moreover, the researchers also find that L. rhodostegia has rich medicinal effects that have not been developed yet. In this paper, the morphological characteristics, ecological habits, geographical distribution and main functions of L. rhodostegia are briefly described. Then, conventional planting technology of L. rhodostegia is analyzed, and the optimization strategy of planting and cultivation technology of L. rhodostegia is put forward. Finally, some prospects for the future development of L. rhodostegia industry is proposed. The research could lay a solid foundation for cultivating varieties of L. rhodostegia with excellent characters.
基金supported by National Natural Science Foundation under Grant No.50875247Shanxi Province Natural Science Foundation under Grant No.2009011026-1
文摘Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
基金This work is supported by Natural Science Foundation of Shandong Province(Grant no.ZR2018MEE021)Equipment Pre Research Fund Project(Grant no.61402100501).
文摘When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system.
文摘In this paper, a detailed thermodynamic analysis of the pure low-temperature waste heat recovery generation system is presented. The parameters affecting the system performance are compared to obtain the most significant ones; furthermore, parameter values are optimized for the largest power generating capability of the system. It is found that the most important parameters are inlet flue gas temperature, steam pressure and the pinch point temperature difference. There is an optimal superheated steam pressure value for giving the maximum generation power per unit flue gas. With the increase of inlet flue gas temperature, the generating power increases and the optimized steam pressure rises as well. However, with increase in pinch point temperature difference, the generating power decreases and the optimized steam pressure decreases as well. The theoretical calculation provides a theoretical basis for the parameters optimization in the design of the pure low-temperature waste heat recovery eeneration swtem
文摘As the country has been placing greater emphasis on agricultural development,rural finance based on supply-side structural reform has achieved tremendous growth.However,investigations have found that the rural financial market still has problems in its service modes,organizational systems,product innovation,and risk evaluation,thus requiring urgent attention.Therefore,this study analyzes and expounds on these problems from the aforementioned four aspects and proposes the following solutions:encourage the creation of agricultural service institutions,establish and improve the rural financial organization system,vigorously develop new rustic financial products,and strengthen the risk supervision and management of financial markets.Only in this way can the agricultural supply-side structural reform and the innovative development of rural finance be realized.