Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process w...Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.展开更多
It is well known that many real-world systems can be described by complex networks with the nodes and the edges representing the individuals and their communications,respectively.Based on recent advances in complex ne...It is well known that many real-world systems can be described by complex networks with the nodes and the edges representing the individuals and their communications,respectively.Based on recent advances in complex networks,this paper aims to provide some new methodologies to study some fundamental problems in smart grids.In particular,it summarises some results for network properties,distributed control and optimisation,and pinning control in complex networks and tries to reveal how these new technologies can be applied in smart grids.展开更多
文摘Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.
基金This work was supported by the National Science Fund for Excellent Young Scholars[grant number 61322302]the National Science Fund for Distinguished Young Scholars[grant number 61025017]+3 种基金the National Natural Science Foundation of China[grant number 61104145],[grant number 61304168]the Natural Science Foundation of Jiangsu Province of China[grant number BK2011581],[grant number BK20130595]the Research Fund for the Doctoral Program of Higher Education of China[grant number 20110092120024]the Fundamental Research Funds for the Central Universities of China,and the Discovery Scheme under[grant number DP140100544].
文摘It is well known that many real-world systems can be described by complex networks with the nodes and the edges representing the individuals and their communications,respectively.Based on recent advances in complex networks,this paper aims to provide some new methodologies to study some fundamental problems in smart grids.In particular,it summarises some results for network properties,distributed control and optimisation,and pinning control in complex networks and tries to reveal how these new technologies can be applied in smart grids.