In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other ...In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v...RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.展开更多
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys...In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.展开更多
Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment meth...Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent o...Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent of total rural energy consumption due to lack of petroleum, coal and new alternative energy sources. As a result, environmental degradation such as land desertification, soil erosion, grassland degradation and soil fertility reduction is increasingly aggravated, the area of desertified land has increased 1467.5 km2 from 1991 to 1997. Degraded area of grassland has reached 2.60×107hm2, increased by 116.1% from 1987 to 1996. To prevent further deterioration of eco-environment in Tibet great efforts should be made to make full use of ample solar energy, wind energy and other biotic energy of the Qinghai-Tibet Plateau. The solar cooking stoves and solar hothouse, expand forest area and replace existing abiotic energy sources with firewood forest should be popularized. This is an urgent task to protect the eco-environment of Tibet today.展开更多
The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear p...The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear power for adjusting the structure of energy sources and heightening economic benefits.and suggests that the first liquefied natural gas combined-cycle power plant will start to build at the end of this century and every effort is made so as to change the recent unreasonable structure of energy source step by step and form the optimized structure of energy sources for generating power, that includes hydropower, thermal power (coal, oil and natural gas), nuclear power, pumpedstorage power, and power from new energy sources. In order to reach the abovementioned significant target, the author discusses the technical and economic measures and the supporting policy to be taken at present and in future.展开更多
The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncerta...The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncertainties in generation output, frequency fluctuations, and insufficient voltage regulation capabilities. As a solution to these challenges, energy storage systems (ESSs) play a crucial role in storing and releasing power as needed. Battery energy storage systems (BESSs) provide significant potential to maximize the energy efficiency of a distribution network and the benefits of different stakeholders. This can be achieved through optimizing placement, sizing, charge/discharge scheduling, and control, all of which contribute to enhancing the overall performance of the network. In this paper, we provide a comprehensive overview of BESS operation, optimization, and modeling in different applications, and how mathematical and artificial intelligence (AI)-based optimization techniques contribute to BESS charging and discharging scheduling. We also discuss some potential future opportunities and challenges of the BESS operation, AI in BESSs, and how emerging technologies, such as internet of things, AI, and big data impact the development of BESSs.展开更多
Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid ...Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment.The meta-heuristic algorithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal solution.This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization(TLBO)named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy the consumer’s load at minimal total annual cost(TAC).The reliability of the system is considered by a maximum allowable loss of power supply probability(LPSPmax)concept.The results obtained from the JLBO algorithm are compared with the original Jaya,TLBO,and genetic algorithms.The JLBO results show superior performance in terms of TAC,and the PV–WT–battery hybrid system is found to be the most economical scenario.This system provides a cost-effective solution for all proposed LPSPmax values as compared with PV–battery and WT–battery systems.展开更多
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente...A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.展开更多
According to the status of the northern rural architecture analysis, the prevalence of high energy consumption, low comfort features, it is essential to design energy-efficient buildings in rural areas. Article resear...According to the status of the northern rural architecture analysis, the prevalence of high energy consumption, low comfort features, it is essential to design energy-efficient buildings in rural areas. Article research and analyze the layout of rural buildings, a variety of energy-saving technologies and building design measures development and utilization of new energy sources and other issues that can make rural buildings to save energy and improve the environmental quality of living of farmers. It also put forward some reasonable suggestions for carrying out residential building energy efficiency in cold areas.展开更多
基金supported by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network (XTCX202001)National Natural Science Foundation of China (52077061)。
文摘In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
文摘RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.
基金supported by Science and Technology Project of SGCC(5108-202218280A-2-375-XG)。
文摘In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.
文摘Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
文摘Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent of total rural energy consumption due to lack of petroleum, coal and new alternative energy sources. As a result, environmental degradation such as land desertification, soil erosion, grassland degradation and soil fertility reduction is increasingly aggravated, the area of desertified land has increased 1467.5 km2 from 1991 to 1997. Degraded area of grassland has reached 2.60×107hm2, increased by 116.1% from 1987 to 1996. To prevent further deterioration of eco-environment in Tibet great efforts should be made to make full use of ample solar energy, wind energy and other biotic energy of the Qinghai-Tibet Plateau. The solar cooking stoves and solar hothouse, expand forest area and replace existing abiotic energy sources with firewood forest should be popularized. This is an urgent task to protect the eco-environment of Tibet today.
文摘The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear power for adjusting the structure of energy sources and heightening economic benefits.and suggests that the first liquefied natural gas combined-cycle power plant will start to build at the end of this century and every effort is made so as to change the recent unreasonable structure of energy source step by step and form the optimized structure of energy sources for generating power, that includes hydropower, thermal power (coal, oil and natural gas), nuclear power, pumpedstorage power, and power from new energy sources. In order to reach the abovementioned significant target, the author discusses the technical and economic measures and the supporting policy to be taken at present and in future.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
基金supported by the Australian Government Department of Industry,Science,Energy,and Resources,and the Department of Climate Change,Energy,the Environment and Water under the International Clean Innovation Researcher Networks(ICIRN)program(grant number:ICIRN000077).
文摘The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncertainties in generation output, frequency fluctuations, and insufficient voltage regulation capabilities. As a solution to these challenges, energy storage systems (ESSs) play a crucial role in storing and releasing power as needed. Battery energy storage systems (BESSs) provide significant potential to maximize the energy efficiency of a distribution network and the benefits of different stakeholders. This can be achieved through optimizing placement, sizing, charge/discharge scheduling, and control, all of which contribute to enhancing the overall performance of the network. In this paper, we provide a comprehensive overview of BESS operation, optimization, and modeling in different applications, and how mathematical and artificial intelligence (AI)-based optimization techniques contribute to BESS charging and discharging scheduling. We also discuss some potential future opportunities and challenges of the BESS operation, AI in BESSs, and how emerging technologies, such as internet of things, AI, and big data impact the development of BESSs.
文摘Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment.The meta-heuristic algorithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal solution.This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization(TLBO)named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy the consumer’s load at minimal total annual cost(TAC).The reliability of the system is considered by a maximum allowable loss of power supply probability(LPSPmax)concept.The results obtained from the JLBO algorithm are compared with the original Jaya,TLBO,and genetic algorithms.The JLBO results show superior performance in terms of TAC,and the PV–WT–battery hybrid system is found to be the most economical scenario.This system provides a cost-effective solution for all proposed LPSPmax values as compared with PV–battery and WT–battery systems.
基金This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/11742.
文摘A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.
文摘According to the status of the northern rural architecture analysis, the prevalence of high energy consumption, low comfort features, it is essential to design energy-efficient buildings in rural areas. Article research and analyze the layout of rural buildings, a variety of energy-saving technologies and building design measures development and utilization of new energy sources and other issues that can make rural buildings to save energy and improve the environmental quality of living of farmers. It also put forward some reasonable suggestions for carrying out residential building energy efficiency in cold areas.