Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities.Several models have been available in the literature for sign language detection and classification for enha...Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities.Several models have been available in the literature for sign language detection and classification for enhanced outcomes.But the latest advancements in computer vision enable us to perform signs/gesture recognition using deep neural networks.This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting Optimization with Machine Learning(ASLGC-DHOML)model.The presented ASLGC-DHOML technique mainly concentrates on recognising and classifying sign language gestures.The presented ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature vectors using the densely connected network(DenseNet169)model.For gesture recognition and classification,a multilayer perceptron(MLP)classifier is exploited to recognize and classify the existence of sign language gestures.Lastly,the DHO algorithm is utilized for parameter optimization of the MLP model.The experimental results of the ASLGC-DHOML model are tested and the outcomes are inspected under distinct aspects.The comparison analysis highlighted that the ASLGC-DHOML method has resulted in enhanced gesture classification results than other techniques with maximum accuracy of 92.88%.展开更多
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is...The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.展开更多
Binary signed digit representation (BSD-R) of an integer is widely used in computer arithmetic, cryptography and digital signal processing. This paper studies what the exact number of optimal BSD-R of an integer is ...Binary signed digit representation (BSD-R) of an integer is widely used in computer arithmetic, cryptography and digital signal processing. This paper studies what the exact number of optimal BSD-R of an integer is and how to generate them entirely. We also show which kinds of integers have the maximum number of optimal BSD-Rs.展开更多
Sign language is mainly utilized in communication with people who have hearing disabilities.Sign language is used to communicate with people hav-ing developmental impairments who have some or no interaction skills.The...Sign language is mainly utilized in communication with people who have hearing disabilities.Sign language is used to communicate with people hav-ing developmental impairments who have some or no interaction skills.The inter-action via Sign language becomes a fruitful means of communication for hearing and speech impaired persons.A Hand gesture recognition systemfinds helpful for deaf and dumb people by making use of human computer interface(HCI)and convolutional neural networks(CNN)for identifying the static indications of Indian Sign Language(ISL).This study introduces a shark smell optimization with deep learning based automated sign language recognition(SSODL-ASLR)model for hearing and speaking impaired people.The presented SSODL-ASLR technique majorly concentrates on the recognition and classification of sign lan-guage provided by deaf and dumb people.The presented SSODL-ASLR model encompasses a two stage process namely sign language detection and sign lan-guage classification.In thefirst stage,the Mask Region based Convolution Neural Network(Mask RCNN)model is exploited for sign language recognition.Sec-ondly,SSO algorithm with soft margin support vector machine(SM-SVM)model can be utilized for sign language classification.To assure the enhanced classifica-tion performance of the SSODL-ASLR model,a brief set of simulations was car-ried out.The extensive results portrayed the supremacy of the SSODL-ASLR model over other techniques.展开更多
针对航空母舰飞行甲板上舰载机弹药保障面临的调度效率不高的问题,提出了一种改进灰狼优化(grey wolf optimizer, GWO)算法。根据甲板上多升降机多运输车的场景特点,建立了由多车场出发、向多目标转运的问题模型。融合遗传算法算子交叉...针对航空母舰飞行甲板上舰载机弹药保障面临的调度效率不高的问题,提出了一种改进灰狼优化(grey wolf optimizer, GWO)算法。根据甲板上多升降机多运输车的场景特点,建立了由多车场出发、向多目标转运的问题模型。融合遗传算法算子交叉思想实现了对灰狼种群初始解的初步优化,并通过直线转运路径中间点定义、整数编码、负整数标志分组等方法实现了对GWO算法求解过程的改进。同时,增加了灰狼个体自由狩猎流程,有效克服了结果陷入局部最优和早熟的问题。最终,通过对场景实例的优化求解,验证了所提方法的有效性和可行性。展开更多
Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a majo...Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a major challenge. Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers, which may lead to insufficient or redundant development of various sensors. In this paper, the optimization of sensor sets is addressed by using the signed digraph (SDG) method. The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods. Two criteria are adopted to evaluate the capability of the sensor sets, namely, observability and resolution. The sensors configuration method of braking system is proposed. It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm. To demonstrate the improvement, the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed. The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults, and with additional four brake cylinder pressure (BCP) sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system. SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults, such as the failure of a release valve. This study investigates the formal extension of the SDG method to the sensor configuration of braking system, as well as the adaptation supported by the effect-function method.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura Universitysupporting this work by Grant Code:22UQU4310373DSR54.
文摘Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities.Several models have been available in the literature for sign language detection and classification for enhanced outcomes.But the latest advancements in computer vision enable us to perform signs/gesture recognition using deep neural networks.This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting Optimization with Machine Learning(ASLGC-DHOML)model.The presented ASLGC-DHOML technique mainly concentrates on recognising and classifying sign language gestures.The presented ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature vectors using the densely connected network(DenseNet169)model.For gesture recognition and classification,a multilayer perceptron(MLP)classifier is exploited to recognize and classify the existence of sign language gestures.Lastly,the DHO algorithm is utilized for parameter optimization of the MLP model.The experimental results of the ASLGC-DHOML model are tested and the outcomes are inspected under distinct aspects.The comparison analysis highlighted that the ASLGC-DHOML method has resulted in enhanced gesture classification results than other techniques with maximum accuracy of 92.88%.
基金supported by the Aviation Science Foundation of China(20105196016)the Postdoctoral Science Foundation of China(2012M521807)
文摘The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.
基金Supported by Chinese National Basic Research Program(2007CB807902)
文摘Binary signed digit representation (BSD-R) of an integer is widely used in computer arithmetic, cryptography and digital signal processing. This paper studies what the exact number of optimal BSD-R of an integer is and how to generate them entirely. We also show which kinds of integers have the maximum number of optimal BSD-Rs.
文摘Sign language is mainly utilized in communication with people who have hearing disabilities.Sign language is used to communicate with people hav-ing developmental impairments who have some or no interaction skills.The inter-action via Sign language becomes a fruitful means of communication for hearing and speech impaired persons.A Hand gesture recognition systemfinds helpful for deaf and dumb people by making use of human computer interface(HCI)and convolutional neural networks(CNN)for identifying the static indications of Indian Sign Language(ISL).This study introduces a shark smell optimization with deep learning based automated sign language recognition(SSODL-ASLR)model for hearing and speaking impaired people.The presented SSODL-ASLR technique majorly concentrates on the recognition and classification of sign lan-guage provided by deaf and dumb people.The presented SSODL-ASLR model encompasses a two stage process namely sign language detection and sign lan-guage classification.In thefirst stage,the Mask Region based Convolution Neural Network(Mask RCNN)model is exploited for sign language recognition.Sec-ondly,SSO algorithm with soft margin support vector machine(SM-SVM)model can be utilized for sign language classification.To assure the enhanced classifica-tion performance of the SSODL-ASLR model,a brief set of simulations was car-ried out.The extensive results portrayed the supremacy of the SSODL-ASLR model over other techniques.
文摘针对航空母舰飞行甲板上舰载机弹药保障面临的调度效率不高的问题,提出了一种改进灰狼优化(grey wolf optimizer, GWO)算法。根据甲板上多升降机多运输车的场景特点,建立了由多车场出发、向多目标转运的问题模型。融合遗传算法算子交叉思想实现了对灰狼种群初始解的初步优化,并通过直线转运路径中间点定义、整数编码、负整数标志分组等方法实现了对GWO算法求解过程的改进。同时,增加了灰狼个体自由狩猎流程,有效克服了结果陷入局部最优和早熟的问题。最终,通过对场景实例的优化求解,验证了所提方法的有效性和可行性。
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA110503-3)Fundamental Research Funds for the Central Universities of China(Grant No.2860219030)Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University,China(Grant No.TPL1308)
文摘Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a major challenge. Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers, which may lead to insufficient or redundant development of various sensors. In this paper, the optimization of sensor sets is addressed by using the signed digraph (SDG) method. The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods. Two criteria are adopted to evaluate the capability of the sensor sets, namely, observability and resolution. The sensors configuration method of braking system is proposed. It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm. To demonstrate the improvement, the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed. The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults, and with additional four brake cylinder pressure (BCP) sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system. SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults, such as the failure of a release valve. This study investigates the formal extension of the SDG method to the sensor configuration of braking system, as well as the adaptation supported by the effect-function method.