期刊文献+
共找到687篇文章
< 1 2 35 >
每页显示 20 50 100
Improved PSO-Extreme Learning Machine Algorithm for Indoor Localization
1
作者 Qiu Wanqing Zhang Qingmiao +1 位作者 Zhao Junhui Yang Lihua 《China Communications》 SCIE CSCD 2024年第5期113-122,共10页
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece... Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms. 展开更多
关键词 extreme learning machine fingerprinting localization indoor localization machine learning particle swarm optimization
下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
2
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine 被引量:1
3
作者 Tusongjiang Kari Zhiyang He +3 位作者 Aisikaer Rouzi Ziwei Zhang Xiaojing Ma Lin Du 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期691-705,共15页
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura... Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy. 展开更多
关键词 Power transformer fault diagnosis kernel extreme learning machine aquila optimization random forest
下载PDF
Aero-engine Thrust Estimation Based on Ensemble of Improved Wavelet Extreme Learning Machine 被引量:3
4
作者 Zhou Jun Zhang Tianhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期290-299,共10页
Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performan... Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.However,it is a big challenge to estimate engine thrust accurately.To tackle this problem,this paper proposes an ensemble of improved wavelet extreme learning machine(EW-ELM)for aircraft engine thrust estimation.Extreme learning machine(ELM)has been proved as an emerging learning technique with high efficiency.Since the combination of ELM and wavelet theory has the both excellent properties,wavelet activation functions are used in the hidden nodes to enhance non-linearity dealing ability.Besides,as original ELM may result in ill-condition and robustness problems due to the random determination of the parameters for hidden nodes,particle swarm optimization(PSO)algorithm is adopted to select the input weights and hidden biases.Furthermore,the ensemble of the improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust.The simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and computation time. 展开更多
关键词 AERO-ENGINE THRUST estimation WAVELET extreme learning machine particle SWARM optimization neural network ENSEMBLE
下载PDF
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
5
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm Particle swarm optimization
下载PDF
A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19 被引量:1
6
作者 Ahmed Reda Sherif Barakat Amira Rezk 《Computers, Materials & Continua》 SCIE EI 2022年第1期1381-1399,共19页
Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need... Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases. 展开更多
关键词 Butterfly optimization algorithm(BOA) covid-19 chest X-ray images convolutional neural network(CNN) extreme learning machine(ELM) feature selection
下载PDF
State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine
7
作者 Kui Chen Jiali Li +5 位作者 Kai Liu Changshan Bai Jiamin Zhu Guoqiang Gao Guangning Wu Salah Laghrouche 《Green Energy and Intelligent Transportation》 2024年第1期46-54,共9页
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith... Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%. 展开更多
关键词 Lithium-ion battery State of health estimation Grey relation analysis method Particle swarm optimization algorithm extreme learning machine
原文传递
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
8
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
Adaptive meta-learning extreme learning machine with golden eagle optimization and logistic map for forecasting the incomplete data of solar iradiance 被引量:1
9
作者 Sarunyoo Boriratrit Pradit Fuangfoo +1 位作者 Chitchai Srithapon Rongrit Chatthaworn 《Energy and AI》 2023年第3期36-51,共16页
Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecast... Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecasting is significant for suitable controlling power system operation,organizing the transmission expansion planning,and dispatching power system generation.Nonetheless,the forecasting performance can be decreased due to the unfitted prediction model and lacked preprocessing.To deal with mentioned issues,this paper pro-poses Meta-Learning Extreme Learning Machine optimized with Golden Eagle Optimization and Logistic Map(MGEL-ELM)and the Same Datetime Interval Averaged Imputation algorithm(SAME)for improving the fore-casting performance of incomplete solar irradiance time series datasets.Thus,the proposed method is not only imputing incomplete forecasting data but also achieving forecasting accuracy.The experimental result of fore-casting solar irradiance dataset in Thailand indicates that the proposed method can achieve the highest coeffi-cient of determination value up to 0.9307 compared to state-of-the-art models.Furthermore,the proposed method consumes less forecasting time than the deep learning model. 展开更多
关键词 Data imputation Golden eagle optimization Logistic maps Meta-learning extreme learning machine Renewable energy forecasting
原文传递
An Intelligent Heuristic Manta-Ray Foraging Optimization and Adaptive Extreme Learning Machine for Hand Gesture Image Recognition
10
作者 Seetharam Khetavath Navalpur Chinnappan Sendhilkumar +5 位作者 Pandurangan Mukunthan Selvaganesan Jana Lakshmanan Malliga Subburayalu Gopalakrishnan Sankuru Ravi Chand Yousef Farhaoui 《Big Data Mining and Analytics》 EI CSCD 2023年第3期321-335,共15页
The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling c... The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches. 展开更多
关键词 hand gesture recognition skin color detection morphological operations Multifaceted Feature Extraction(MFE)model Heuristic Manta-ray Foraging optimization(HMFO) Adaptive extreme learning machine(AELM)
原文传递
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery 被引量:2
11
作者 Hongjun SU Shufang TIAN +3 位作者 Yue CAI Yehua SHENG Chen CHEN Maryam NAJAFIAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2017年第4期765-773,共9页
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian... This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly. 展开更多
关键词 extreme learning machine firefly algorithm parameters optimization hyperspectral image classification
原文传递
Economic Dispatch with High Penetration of Wind Power Using Extreme Learning Machine Assisted Group Search Optimizer with Multiple Producers Considering Upside Potential and Downside Risk
12
作者 Yuanzheng Li Jingjing Huang +4 位作者 Yun Liu Zhixian Ni Yu Shen Wei Hu Lei Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1459-1471,共13页
The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This pape... The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This paper proposes a multi-objective ED(MuOED)model,in which the expected generation cost(EGC),upside potential(USP),and downside risk(DSR)are simultaneously considered.The heterogeneous indices of upside potential and downside risk mean the potential economic gains and losses brought by high penetration of wind power,respectively.Then,the MuOED model is formulated as a tri-objective optimization problem,which is related to uncertain multi-criteria decision-making against uncertainties.Afterwards,the tri-objective optimization problem is solved by an extreme learning machine(ELM)assisted group search optimizer with multiple producers(GSOMP).Pareto solutions are obtained to reflect the trade-off among the expected generation cost,the upside potential,and the downside risk.And a fuzzy decision-making method is used to choose the final ED solution.Case studies based on the Midwestern US power system verify the effectiveness of the proposed MuOED model and the developed optimization algorithm. 展开更多
关键词 Economic dispatch(ED) wind power extreme learning machine optimization algorithm
原文传递
Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization 被引量:2
13
作者 Nana Zhang Kun Zhu +1 位作者 Shi Ying Xu Wang 《Computers, Materials & Continua》 SCIE EI 2020年第10期279-308,共30页
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos... Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics. 展开更多
关键词 Software defect prediction deep neural network stacked contractive autoencoder multi-objective optimization extreme learning machine
下载PDF
Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
14
作者 Saima Hassan Mojtaba Ahmadieh Khanesar +3 位作者 Nazar Kalaf Hussein Samir Brahim Belhaouari Usman Amjad Wali Khan Mashwani 《Computers, Materials & Continua》 SCIE EI 2022年第5期3513-3531,共19页
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ... The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS. 展开更多
关键词 Parameter optimization grasshopper optimization algorithm interval type-2 fuzzy logic system extreme learning machine electricity market forecasting
下载PDF
A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack
15
作者 Zhuoxuan Li Iakov Korovin +4 位作者 Xinli Shi Sergey Gorbachev Nadezhda Gorbacheva Wei Huang Jinde Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1918-1932,共15页
Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This stu... Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements’ rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from19 asphalt pavements with different crude oil sources on a 2.038km long full-scale field accelerated pavement test track(Road Track Institute, RIOHTrack) in Tongzhou, Beijing. In addition,this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction(RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of average root mean squared error(MSE), average mean absolute error(MAE), and a verage mean absolute percentage error(MAPE) for 19 asphalt pavements reaching 1.742, 1.363, and 1.94% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters. It is a promising alternative method that facilitates the rapid assessment of pavement conditions and could be applied in the future to production processes in the oil and gas industry. 展开更多
关键词 extreme learning machine algorithm with residual correction(RELM) metaheuristic optimization oil-gas transportation RIOHTrack rutting depth
下载PDF
Assessment of different machine learning techniques in predicting the compressive strength of self-compacting concrete 被引量:1
16
作者 Van Quan TRAN Hai-Van Thi MAI +1 位作者 Thuy-Anh NGUYEN Hai-Bang LY 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第7期928-945,共18页
The compressive strength of self-compacting concrete(SCC)needs to be determined during the construction design process.This paper shows that the compressive strength of SCC(CS of SCC)can be successfully predicted from... The compressive strength of self-compacting concrete(SCC)needs to be determined during the construction design process.This paper shows that the compressive strength of SCC(CS of SCC)can be successfully predicted from mix design and curing age by a machine learning(ML)technique named the Extreme Gradient Boosting(XGB)algorithm,including non-hybrid and hybrid models.Nine ML techniques,such as Linear regression(LR),K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Decision Trees(DTR),Random Forest(RF),Gradient Boosting(GB),and Artificial Neural Network using two training algorithms LBFGS and SGD(denoted as ANN_LBFGS and ANN_SGD),are also compared with the XGB model.Moreover,the hybrid models of eight ML techniques and Particle Swarm Optimization(PSO)are constructed to highlight the reliability and accuracy of SCC compressive strength prediction by the XGB_PSO hybrid model.The highest number of SCC samples available in the literature is collected for building the ML techniques.Compared with previously published works’performance,the proposed XGB method,both hybrid and non-hybrid models,is the most reliable and robust of the examined techniques,and is more accurate than existing ML methods(R2=0.9644,RMSE=4.7801,and MAE=3.4832).Therefore,the XGB model can be used as a practical tool for engineers in predicting the CS of SCC. 展开更多
关键词 compressive strength self-compacting concrete machine learning techniques particle swarm optimization extreme gradient boosting
原文传递
Identification of Pulmonary Hypertension Animal Models Using a New Evolutionary Machine Learning Framework Based on Blood Routine Indicators
17
作者 Jiao Hu Shushu Lv +5 位作者 Tao Zhou Huiling Chen Lei Xiao Xiaoying Huang Liangxing Wang Peiliang Wu 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期762-781,共20页
Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study... Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study proposes a Kernel Extreme Learning Machine(KELM)model based on an improved Whale Optimization Algorithm(WOA)for predicting PH mouse models.The experimental results showed that the selected blood indicators,including Haemoglobin(HGB),Hematocrit(HCT),Mean,Platelet Volume(MPV),Platelet distribution width(PDW),and Platelet–Large Cell Ratio(P-LCR),were essential for identifying PH mouse models using the feature selection method proposed in this paper.Remarkably,the method achieved 100.0%accuracy and 100.0%specificity in classification,demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models. 展开更多
关键词 Feature selection Pulmonary hypertension Whale optimization algorithm extreme learning machine
原文传递
基于数据驱动的配电网无功优化 被引量:4
18
作者 蔡昌春 程增茂 +2 位作者 张关应 李源佳 储云迪 《电网技术》 EI CSCD 北大核心 2024年第1期373-382,共10页
传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建... 传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建深度学习机制,利用自动编码器建立极限学习机输入-输出的直接耦合关系,实现无监督学习和有监督学习有机结合,缩短训练模型的迭代过程;利用蒙特卡洛法基于分布式电源、负荷预测信息构建配电网运行场景,利用深度极限学习机挖掘运行场景优化运行与无功调压设备状态间的内在联系,建立电网运行场景与系统无功调压策略的映射关系。该文提出的基于数据驱动的无功优化方法不依赖实际系统潮流计算,能够实现配电网运行状态的跟踪和无功调节设备的优化调度,为配电网无功电压的主动控制打下基础。 展开更多
关键词 数据驱动 无功优化 深度极限学习机 自动编码器 主动控制
下载PDF
基于IAOA-KELM的储气库注采管柱内腐蚀速率预测 被引量:1
19
作者 骆正山 于瑶如 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期971-977,共7页
针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降... 针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降低因子、采用黄金正弦算法缩小搜索空间,提高局部开发能力,利用改进阿基米德优化算法(Improved Archimedes Optimization Algorithm,IAOA)优化KELM正则化系数(C)和核函数参数(γ),进而建立IAOA-KELM储气库注采管柱内腐蚀速率预测模型;使用MATLAB软件运用该模型对某注采管柱内腐蚀数据集进行学习与预测,将IAOA-KELM模型与KELM、粒子群优化算法(Particle Swarm Optimization,PSO)-KELM、AOA-KELM结果进行预测误差对比。结果表明,IAOA-KELM模型的预测值与实际值较为拟合,其E RMSE为0.65%,E MAE为0.39%,R 2为99.83%,均优于其他模型。研究表明,IAOA-KELM模型能够更为准确地预测储气库注采管柱内腐蚀速率,为储气库注采管柱的运维及储气库的健康管理提供参考。 展开更多
关键词 安全工程 地下储气库 注采管柱 核极限学习机 改进阿基米德优化算法 腐蚀速率
下载PDF
基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断方法
20
作者 王艳 王寅初 +3 位作者 赵洪山 李伟 连洪钵 康磊 《电力自动化设备》 EI CSCD 北大核心 2024年第9期205-211,218,共8页
为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题... 为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题,引入基于正弦优化的改进麻雀搜索算法(ISSA)优化相关参数,提高基分类器的分类性能。使用改进的自适应增强(AdaBoost.M2)算法构建集成学习模型,扩展基分类器的输出,并引入伪损失函数替代传统AdaBoost算法中的加权误差,以增强集成分类器综合表达能力,得到基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断模型,进一步提高模型识别精度。通过909组油中溶解气体分析(DGA)样本对所提方法进行实例分析,结果表明该方法具有较好的诊断精度和分类性能,能够实现电力变压器故障类型的准确识别。 展开更多
关键词 电力变压器 故障诊断 集成学习 智能优化算法 极限学习机
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部