Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece...Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.展开更多
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid...Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models.展开更多
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura...Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.展开更多
Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performan...Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.However,it is a big challenge to estimate engine thrust accurately.To tackle this problem,this paper proposes an ensemble of improved wavelet extreme learning machine(EW-ELM)for aircraft engine thrust estimation.Extreme learning machine(ELM)has been proved as an emerging learning technique with high efficiency.Since the combination of ELM and wavelet theory has the both excellent properties,wavelet activation functions are used in the hidden nodes to enhance non-linearity dealing ability.Besides,as original ELM may result in ill-condition and robustness problems due to the random determination of the parameters for hidden nodes,particle swarm optimization(PSO)algorithm is adopted to select the input weights and hidden biases.Furthermore,the ensemble of the improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust.The simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and computation time.展开更多
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti...Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting.展开更多
Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need...Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases.展开更多
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith...Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%.展开更多
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat...In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.展开更多
Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecast...Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecasting is significant for suitable controlling power system operation,organizing the transmission expansion planning,and dispatching power system generation.Nonetheless,the forecasting performance can be decreased due to the unfitted prediction model and lacked preprocessing.To deal with mentioned issues,this paper pro-poses Meta-Learning Extreme Learning Machine optimized with Golden Eagle Optimization and Logistic Map(MGEL-ELM)and the Same Datetime Interval Averaged Imputation algorithm(SAME)for improving the fore-casting performance of incomplete solar irradiance time series datasets.Thus,the proposed method is not only imputing incomplete forecasting data but also achieving forecasting accuracy.The experimental result of fore-casting solar irradiance dataset in Thailand indicates that the proposed method can achieve the highest coeffi-cient of determination value up to 0.9307 compared to state-of-the-art models.Furthermore,the proposed method consumes less forecasting time than the deep learning model.展开更多
The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling c...The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.展开更多
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian...This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.展开更多
The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This pape...The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This paper proposes a multi-objective ED(MuOED)model,in which the expected generation cost(EGC),upside potential(USP),and downside risk(DSR)are simultaneously considered.The heterogeneous indices of upside potential and downside risk mean the potential economic gains and losses brought by high penetration of wind power,respectively.Then,the MuOED model is formulated as a tri-objective optimization problem,which is related to uncertain multi-criteria decision-making against uncertainties.Afterwards,the tri-objective optimization problem is solved by an extreme learning machine(ELM)assisted group search optimizer with multiple producers(GSOMP).Pareto solutions are obtained to reflect the trade-off among the expected generation cost,the upside potential,and the downside risk.And a fuzzy decision-making method is used to choose the final ED solution.Case studies based on the Midwestern US power system verify the effectiveness of the proposed MuOED model and the developed optimization algorithm.展开更多
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos...Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics.展开更多
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ...The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS.展开更多
Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This stu...Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements’ rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from19 asphalt pavements with different crude oil sources on a 2.038km long full-scale field accelerated pavement test track(Road Track Institute, RIOHTrack) in Tongzhou, Beijing. In addition,this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction(RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of average root mean squared error(MSE), average mean absolute error(MAE), and a verage mean absolute percentage error(MAPE) for 19 asphalt pavements reaching 1.742, 1.363, and 1.94% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters. It is a promising alternative method that facilitates the rapid assessment of pavement conditions and could be applied in the future to production processes in the oil and gas industry.展开更多
The compressive strength of self-compacting concrete(SCC)needs to be determined during the construction design process.This paper shows that the compressive strength of SCC(CS of SCC)can be successfully predicted from...The compressive strength of self-compacting concrete(SCC)needs to be determined during the construction design process.This paper shows that the compressive strength of SCC(CS of SCC)can be successfully predicted from mix design and curing age by a machine learning(ML)technique named the Extreme Gradient Boosting(XGB)algorithm,including non-hybrid and hybrid models.Nine ML techniques,such as Linear regression(LR),K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Decision Trees(DTR),Random Forest(RF),Gradient Boosting(GB),and Artificial Neural Network using two training algorithms LBFGS and SGD(denoted as ANN_LBFGS and ANN_SGD),are also compared with the XGB model.Moreover,the hybrid models of eight ML techniques and Particle Swarm Optimization(PSO)are constructed to highlight the reliability and accuracy of SCC compressive strength prediction by the XGB_PSO hybrid model.The highest number of SCC samples available in the literature is collected for building the ML techniques.Compared with previously published works’performance,the proposed XGB method,both hybrid and non-hybrid models,is the most reliable and robust of the examined techniques,and is more accurate than existing ML methods(R2=0.9644,RMSE=4.7801,and MAE=3.4832).Therefore,the XGB model can be used as a practical tool for engineers in predicting the CS of SCC.展开更多
Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study...Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study proposes a Kernel Extreme Learning Machine(KELM)model based on an improved Whale Optimization Algorithm(WOA)for predicting PH mouse models.The experimental results showed that the selected blood indicators,including Haemoglobin(HGB),Hematocrit(HCT),Mean,Platelet Volume(MPV),Platelet distribution width(PDW),and Platelet–Large Cell Ratio(P-LCR),were essential for identifying PH mouse models using the feature selection method proposed in this paper.Remarkably,the method achieved 100.0%accuracy and 100.0%specificity in classification,demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models.展开更多
基金supported in part by the National Natural Science Foundation of China(U2001213 and 61971191)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011+2 种基金in part by National Key Research and Development Project(2020YFB1807204)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S321)。
文摘Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.
文摘Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science and technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2).
文摘Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.
基金supported by the National Natural Science Foundation of China (Nos.51176075,51576097)the Fouding of Jiangsu Innovation Program for Graduate Education(No.KYLX_0305)
文摘Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.However,it is a big challenge to estimate engine thrust accurately.To tackle this problem,this paper proposes an ensemble of improved wavelet extreme learning machine(EW-ELM)for aircraft engine thrust estimation.Extreme learning machine(ELM)has been proved as an emerging learning technique with high efficiency.Since the combination of ELM and wavelet theory has the both excellent properties,wavelet activation functions are used in the hidden nodes to enhance non-linearity dealing ability.Besides,as original ELM may result in ill-condition and robustness problems due to the random determination of the parameters for hidden nodes,particle swarm optimization(PSO)algorithm is adopted to select the input weights and hidden biases.Furthermore,the ensemble of the improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust.The simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and computation time.
文摘Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting.
文摘Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases.
基金This work was supported by the State Grid Corporation Headquarters Management Technology Project(SGTYHT/19-JS-215)Southwest Jiaotong University new interdisciplinary cultivation project by(YH1500112432273).
文摘Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%.
文摘In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.
文摘Solar energy has become crucial in producing electrical energy because it is inexhaustible and sustainable.However,its uncertain generation causes problems in power system operation.Therefore,solar irradiance forecasting is significant for suitable controlling power system operation,organizing the transmission expansion planning,and dispatching power system generation.Nonetheless,the forecasting performance can be decreased due to the unfitted prediction model and lacked preprocessing.To deal with mentioned issues,this paper pro-poses Meta-Learning Extreme Learning Machine optimized with Golden Eagle Optimization and Logistic Map(MGEL-ELM)and the Same Datetime Interval Averaged Imputation algorithm(SAME)for improving the fore-casting performance of incomplete solar irradiance time series datasets.Thus,the proposed method is not only imputing incomplete forecasting data but also achieving forecasting accuracy.The experimental result of fore-casting solar irradiance dataset in Thailand indicates that the proposed method can achieve the highest coeffi-cient of determination value up to 0.9307 compared to state-of-the-art models.Furthermore,the proposed method consumes less forecasting time than the deep learning model.
文摘The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.
文摘This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
基金supported by the Key Scientific and Technological Research Project of State Grid Corporation of China(No.5400-202022113A-0-0-00).
文摘The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This paper proposes a multi-objective ED(MuOED)model,in which the expected generation cost(EGC),upside potential(USP),and downside risk(DSR)are simultaneously considered.The heterogeneous indices of upside potential and downside risk mean the potential economic gains and losses brought by high penetration of wind power,respectively.Then,the MuOED model is formulated as a tri-objective optimization problem,which is related to uncertain multi-criteria decision-making against uncertainties.Afterwards,the tri-objective optimization problem is solved by an extreme learning machine(ELM)assisted group search optimizer with multiple producers(GSOMP).Pareto solutions are obtained to reflect the trade-off among the expected generation cost,the upside potential,and the downside risk.And a fuzzy decision-making method is used to choose the final ED solution.Case studies based on the Midwestern US power system verify the effectiveness of the proposed MuOED model and the developed optimization algorithm.
基金This work is supported in part by the National Science Foundation of China(Grant Nos.61672392,61373038)in part by the National Key Research and Development Program of China(Grant No.2016YFC1202204).
文摘Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics.
文摘The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS.
基金supported by the Analytical Center for the Government of the Russian Federation (IGK 000000D730321P5Q0002) and Agreement Nos.(70-2021-00141)。
文摘Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements’ rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from19 asphalt pavements with different crude oil sources on a 2.038km long full-scale field accelerated pavement test track(Road Track Institute, RIOHTrack) in Tongzhou, Beijing. In addition,this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction(RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of average root mean squared error(MSE), average mean absolute error(MAE), and a verage mean absolute percentage error(MAPE) for 19 asphalt pavements reaching 1.742, 1.363, and 1.94% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters. It is a promising alternative method that facilitates the rapid assessment of pavement conditions and could be applied in the future to production processes in the oil and gas industry.
文摘The compressive strength of self-compacting concrete(SCC)needs to be determined during the construction design process.This paper shows that the compressive strength of SCC(CS of SCC)can be successfully predicted from mix design and curing age by a machine learning(ML)technique named the Extreme Gradient Boosting(XGB)algorithm,including non-hybrid and hybrid models.Nine ML techniques,such as Linear regression(LR),K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Decision Trees(DTR),Random Forest(RF),Gradient Boosting(GB),and Artificial Neural Network using two training algorithms LBFGS and SGD(denoted as ANN_LBFGS and ANN_SGD),are also compared with the XGB model.Moreover,the hybrid models of eight ML techniques and Particle Swarm Optimization(PSO)are constructed to highlight the reliability and accuracy of SCC compressive strength prediction by the XGB_PSO hybrid model.The highest number of SCC samples available in the literature is collected for building the ML techniques.Compared with previously published works’performance,the proposed XGB method,both hybrid and non-hybrid models,is the most reliable and robust of the examined techniques,and is more accurate than existing ML methods(R2=0.9644,RMSE=4.7801,and MAE=3.4832).Therefore,the XGB model can be used as a practical tool for engineers in predicting the CS of SCC.
基金the National Natural Science Foundation of China(82003831,62076185 and U1809209)the Project of Health Commission of Zhejiang Province(2020KY177)+2 种基金the Wenzhou Technology Foundation(Y2020002)the Natural Science Foundation of Zhejiang Province(LZ22F020005)the First Affiliated Hospital of Wenzhou Medical University Youth Excellence Project(QNYC114).
文摘Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study proposes a Kernel Extreme Learning Machine(KELM)model based on an improved Whale Optimization Algorithm(WOA)for predicting PH mouse models.The experimental results showed that the selected blood indicators,including Haemoglobin(HGB),Hematocrit(HCT),Mean,Platelet Volume(MPV),Platelet distribution width(PDW),and Platelet–Large Cell Ratio(P-LCR),were essential for identifying PH mouse models using the feature selection method proposed in this paper.Remarkably,the method achieved 100.0%accuracy and 100.0%specificity in classification,demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models.