In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and the...In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.展开更多
文摘In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.