During the process of local post-weld heat treatment ( PWHT) , the temperature difference inside the weld overlay is a very influential factor on relieving residual stress. In this paper, a commercial program (ABA...During the process of local post-weld heat treatment ( PWHT) , the temperature difference inside the weld overlay is a very influential factor on relieving residual stress. In this paper, a commercial program (ABAQUS) was used to simulate the temperature field in turbine rotor, and the influence of heat treatment parameters on temperature was investigated by finite element method. Weight analysis shows that the holding temperature and heating rate are the main factors affecting on temperature, especially the holding temperature. Besides, two regression equations that reflect the relationship between temperature and heat treatment parameters were fitted with uniform design method. Both the correlation coefficients of the regression equations are up to O. 999 2, and the maximum residual error is only O. 7. The agreement between simulation results and regression results is shown to be excellent. At the end, local heat treatment parameters were optimized using the simplex method.展开更多
A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensi...A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions.展开更多
The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms ...The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.展开更多
The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performa...The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction.展开更多
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong...In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.展开更多
An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of c...An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability. The optimal design algorithm is developed to decide the profiles both of the steering and spinning canards,and their deflection angles are also simulated to meet the needs of trajectory correction capabilities.Finally, the aerodynamic efficiency of the specific canards is discussed according to the CFD simulations.Results that obtained here can be further applied to the exterior ballistics design.展开更多
Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the ...Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.展开更多
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic...Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.展开更多
The quality of skeleton system for the cheetah robot goes hand in hand with its bionic result of its shape, structure and functions. In view of the skeleton system constitution and structural characteristic of the che...The quality of skeleton system for the cheetah robot goes hand in hand with its bionic result of its shape, structure and functions. In view of the skeleton system constitution and structural characteristic of the cheetah, the team applied structure design, stimulation analysis and parameter optimization to developing the cheetah robot. In addition, after the invention of cheetah robot's anterior lumbar vertebra based on its functional attribute and connectivity attribute, the Solidworks Simulation was utilized to analyze the design, according to which improvement on the lumbar vertebra was made. Plus, the advantages of the CAD and CAE made the high efficiency of design work and high quality of the cheetah robot possible.展开更多
With the development of technology and the change of market demands,the trend in middle and high grade bicycle manufacturing is developed toward small-volume,multi-species,and customer-oriented production.Therefore,hu...With the development of technology and the change of market demands,the trend in middle and high grade bicycle manufacturing is developed toward small-volume,multi-species,and customer-oriented production.Therefore,human element should be fully considered in design so that the bicycle has the best cycling performance for the specific rider.Currently,customized design is difficult to achieve since feature parameters of the rider are not included in the design.The design of bicycle frame is the most important in bicycle design.The relative positions among the saddle,handlebar and central axis are defined as the bicycle three-pivot,they are the main parameters in bicycle frame design.In conventional bicycle design,frame parameters are merely relevant to bicycle types.On the basis of the principles of biomechanics and ergonomics knowledge,this paper presents a design method for bicycle three-pivot considering feature parameters of the rider by dynamic simulation.Firstly,a dynamic model of rider-bicycle system is built for a special rider,and a serial of simulation experiments is designed by uniform test method.Then,a mathematical model is built between the three-pivot position and the square of lower limb muscle stress by using simulation and regression analysis of the rider-bicycle system.The optimal three-pivot position parameters are obtained by setting the minimal of the square of the lower limb muscle stress as the objective.Therefore,the optimal parameters are gained for the specific rider.Finally,various results are gained for different riders based on the same design process.The function between feature parameters of the rider and the optimum three-pivot position parameters is built by regression.Bicycle design considering biomechanics can be divided into three main steps:calculating the three-pivot position,designing the geometrical structure of the bicycle frame and analyzing frame strength,and selecting appropriate parts and assembling the bicycle.Bicycle design considering biomechanics changes the conventional bicycle design and realizes customized design by considering human element in the design process.展开更多
Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate...Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate design data. After a further sensitive analysis is carried out, the related parameters choice and control methods are recommended in the engineering practice. By taking the extreme environment conditions into consideration, the effects of bending stress reduction and curve control are analyzed, and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results. At last, dynamic analysis and fatigue analysis, based on actual project, are carried out with designed stress joint. The analysis results prove the feasibility and guidance of this method in the practical engineering applications.展开更多
To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ...To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.展开更多
To better improve the lightweight and fatigue durability performance of the tractor cab,a multi-objective lightweight design of the cab was carried out in this study.First,the finite element model of the cab with coun...To better improve the lightweight and fatigue durability performance of the tractor cab,a multi-objective lightweight design of the cab was carried out in this study.First,the finite element model of the cab with counterweight loading was established and then confirmed by the physical testing,and use the inertial reliefmethod to obtain stress distribution under unit load.The cab-frame rigid-flexible couplingmulti-body dynamicsmodelwas built by Adams/car software.Taking the cab airbag mount displacement and acceleration signals acquired on the proving ground as the desired signals and obtaining the fatigue analysis load spectrum through Femfat-Lab virtual iteration.The fatigue simulation analysis is performed in nCode based on the Miner linear fatigue cumulative damage theory.Then,with themass and fatigue damage values as the optimization objectives,the bending-torsional stiffness and first-order bending-torsional mode as constraints,the thickness variables are screed based on the sensitivity analysis.The experimental design was carried out using the Optimal Latin hypercube method,and the multi-objective optimal design of the cab was carried out using theKriging approximationmodel fitting and particle swarmalgorithm.The weight of the optimized cab is reduced by 7.8%on the basis of meeting the fatigue durability performance.Finally,a seven-axis road simulation test rig was designed to verify its fatigue durability.The results show the optimized cab can consider both lightweight and durability.展开更多
Direct contract between the sealed liquid and the magnetic fluid in a dynamic system under magnetic field may lead to an unstable interface, consequently, break down the seal. Aiming at this problem, a new magnetic fl...Direct contract between the sealed liquid and the magnetic fluid in a dynamic system under magnetic field may lead to an unstable interface, consequently, break down the seal. Aiming at this problem, a new magnetic fluid seal (MFS) was developed. In this new MFS, a soft iron bushing with high permeability was introduced on the shaft and nonferrous shields were installed beside the bushing and the pole pieces. The parameters of the bushing and the shields were optimized in a seal simulation facility The results show that the bushing with a thickness of 7 mm and shields with a width of 8 mm are best for sealing a shaft 20 mm in diameter. The MFS designed based on the optimum parameters shows good performance and long life span for sealing lubricating oil.展开更多
In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm opti...In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.展开更多
Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trai...Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements.展开更多
This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimizat...This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimization methods. It inherits the ability in finding global optimum from PSO and also suits for discretized design domain. Some special schemes are used in order to provide higher computation efficiency. This method has only been tested with a convex optimization problem. The application in case of a concave problem will be a future study.展开更多
In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factoria...In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.展开更多
文摘During the process of local post-weld heat treatment ( PWHT) , the temperature difference inside the weld overlay is a very influential factor on relieving residual stress. In this paper, a commercial program (ABAQUS) was used to simulate the temperature field in turbine rotor, and the influence of heat treatment parameters on temperature was investigated by finite element method. Weight analysis shows that the holding temperature and heating rate are the main factors affecting on temperature, especially the holding temperature. Besides, two regression equations that reflect the relationship between temperature and heat treatment parameters were fitted with uniform design method. Both the correlation coefficients of the regression equations are up to O. 999 2, and the maximum residual error is only O. 7. The agreement between simulation results and regression results is shown to be excellent. At the end, local heat treatment parameters were optimized using the simplex method.
文摘A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions.
基金Supported by the Science and Technology Support Key Project of 12th Five-Year of China(2011BAD20B00-4)~~
文摘The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.
基金funding of the National Natural Science Foundation of China (Nos.52072156,51605198)Postdoctoral Foundation of China (2020M682269).
文摘The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction.
基金supported by National Natural Science Foundation of China (Grant Nos. 51135003, U1234208, 51205050)New Teachers' Fund for Doctor Stations of Ministry of Education of China (Grant No.20110042120020)+1 种基金Fundamental Research Funds for the Central Universities, China (Grant No. N110303003)China Postdoctoral Science Foundation (Grant No. 2011M500564)
文摘In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.
文摘An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability. The optimal design algorithm is developed to decide the profiles both of the steering and spinning canards,and their deflection angles are also simulated to meet the needs of trajectory correction capabilities.Finally, the aerodynamic efficiency of the specific canards is discussed according to the CFD simulations.Results that obtained here can be further applied to the exterior ballistics design.
文摘Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.
基金Supported by National Natural Science Foundation of China(Grant Nos.51965006 and 51875209)Guangxi Natural Science Foundation of China(Grant No.2018GXNSFAA050111)+1 种基金Innovation Project of Guangxi Graduate Education of China(Grant No.YCSW2019035)Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials of China(Grant No.2019001).
文摘Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.
文摘The quality of skeleton system for the cheetah robot goes hand in hand with its bionic result of its shape, structure and functions. In view of the skeleton system constitution and structural characteristic of the cheetah, the team applied structure design, stimulation analysis and parameter optimization to developing the cheetah robot. In addition, after the invention of cheetah robot's anterior lumbar vertebra based on its functional attribute and connectivity attribute, the Solidworks Simulation was utilized to analyze the design, according to which improvement on the lumbar vertebra was made. Plus, the advantages of the CAD and CAE made the high efficiency of design work and high quality of the cheetah robot possible.
基金supported by Tianjin Municipal Special Fund Project for Technology Innovation of China(Grant No.10FDZDGX00500),and Tianjin Municipal Key Laboratory of Advanced Manufacturing Technology and Equipment of Tianjin University of China
文摘With the development of technology and the change of market demands,the trend in middle and high grade bicycle manufacturing is developed toward small-volume,multi-species,and customer-oriented production.Therefore,human element should be fully considered in design so that the bicycle has the best cycling performance for the specific rider.Currently,customized design is difficult to achieve since feature parameters of the rider are not included in the design.The design of bicycle frame is the most important in bicycle design.The relative positions among the saddle,handlebar and central axis are defined as the bicycle three-pivot,they are the main parameters in bicycle frame design.In conventional bicycle design,frame parameters are merely relevant to bicycle types.On the basis of the principles of biomechanics and ergonomics knowledge,this paper presents a design method for bicycle three-pivot considering feature parameters of the rider by dynamic simulation.Firstly,a dynamic model of rider-bicycle system is built for a special rider,and a serial of simulation experiments is designed by uniform test method.Then,a mathematical model is built between the three-pivot position and the square of lower limb muscle stress by using simulation and regression analysis of the rider-bicycle system.The optimal three-pivot position parameters are obtained by setting the minimal of the square of the lower limb muscle stress as the objective.Therefore,the optimal parameters are gained for the specific rider.Finally,various results are gained for different riders based on the same design process.The function between feature parameters of the rider and the optimum three-pivot position parameters is built by regression.Bicycle design considering biomechanics can be divided into three main steps:calculating the three-pivot position,designing the geometrical structure of the bicycle frame and analyzing frame strength,and selecting appropriate parts and assembling the bicycle.Bicycle design considering biomechanics changes the conventional bicycle design and realizes customized design by considering human element in the design process.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant No. 2008AA09A105-04)
文摘Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate design data. After a further sensitive analysis is carried out, the related parameters choice and control methods are recommended in the engineering practice. By taking the extreme environment conditions into consideration, the effects of bending stress reduction and curve control are analyzed, and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results. At last, dynamic analysis and fatigue analysis, based on actual project, are carried out with designed stress joint. The analysis results prove the feasibility and guidance of this method in the practical engineering applications.
基金Project(2009BSXT022) supported by the Dissertation Innovation Foundation of Central South University, ChinaProject(07JJ4016) supported by Natural Science Foundation of Hunan Province, ChinaProject(U0937604) supported by National Natural Science Foundation of China
文摘To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.
基金supported in part by the Science and Technology Major Project of Guangxi under Grants AA18242033 and AA19182004in part by the Key Research andDevelopment Program of Guangxi AB21196029+3 种基金in part by the Scientific Research and Technology Development in Liuzhou 2020GAAA0404,2021AAA0104 and 2021AAA0112in part by the Guangxi Higher Education Undergraduate Teaching Reform Project Grant 2021JGA180in part by the GUET Education Undergraduate Teaching Reform Project Grant JGB202002in part by the Innovation Project of GUET Graduate Education (2022YCXS017).
文摘To better improve the lightweight and fatigue durability performance of the tractor cab,a multi-objective lightweight design of the cab was carried out in this study.First,the finite element model of the cab with counterweight loading was established and then confirmed by the physical testing,and use the inertial reliefmethod to obtain stress distribution under unit load.The cab-frame rigid-flexible couplingmulti-body dynamicsmodelwas built by Adams/car software.Taking the cab airbag mount displacement and acceleration signals acquired on the proving ground as the desired signals and obtaining the fatigue analysis load spectrum through Femfat-Lab virtual iteration.The fatigue simulation analysis is performed in nCode based on the Miner linear fatigue cumulative damage theory.Then,with themass and fatigue damage values as the optimization objectives,the bending-torsional stiffness and first-order bending-torsional mode as constraints,the thickness variables are screed based on the sensitivity analysis.The experimental design was carried out using the Optimal Latin hypercube method,and the multi-objective optimal design of the cab was carried out using theKriging approximationmodel fitting and particle swarmalgorithm.The weight of the optimized cab is reduced by 7.8%on the basis of meeting the fatigue durability performance.Finally,a seven-axis road simulation test rig was designed to verify its fatigue durability.The results show the optimized cab can consider both lightweight and durability.
基金Project 2002AA302608 supported by Hi-Tech R & D Program of China (863 Program) and scientific research foundation of China University of Mining& Technology
文摘Direct contract between the sealed liquid and the magnetic fluid in a dynamic system under magnetic field may lead to an unstable interface, consequently, break down the seal. Aiming at this problem, a new magnetic fluid seal (MFS) was developed. In this new MFS, a soft iron bushing with high permeability was introduced on the shaft and nonferrous shields were installed beside the bushing and the pole pieces. The parameters of the bushing and the shields were optimized in a seal simulation facility The results show that the bushing with a thickness of 7 mm and shields with a width of 8 mm are best for sealing a shaft 20 mm in diameter. The MFS designed based on the optimum parameters shows good performance and long life span for sealing lubricating oil.
文摘In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.
文摘Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements.
文摘This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimization methods. It inherits the ability in finding global optimum from PSO and also suits for discretized design domain. Some special schemes are used in order to provide higher computation efficiency. This method has only been tested with a convex optimization problem. The application in case of a concave problem will be a future study.
文摘In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.