The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parame...The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.展开更多
[Objective] This study aimed to examine the simulated effect of Computable General Equilibrium (CGE)-based agricultural policy simulation system. [Method] The policy simulation platform based on CGE model was constr...[Objective] This study aimed to examine the simulated effect of Computable General Equilibrium (CGE)-based agricultural policy simulation system. [Method] The policy simulation platform based on CGE model was constructed by integrating policy simulation, CGE model and Decision Supporting System (DSS). The scenario analysis method was used to analyze the agricultural subsides policy simulation through empirical analysis. [Result] Farmers were the main beneficiaries of increasing agricultural production subsidies, which increased farmers' income and improved the export of agriculture products. The prototype system could solve the problems in actual policy simulation. [Conclusion] The results lay the foundation for the quantitative study on agricultural subsidy policy in China.展开更多
A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-...A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of ...The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided.展开更多
Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as constr...Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as construction machinery, heavy equipment, weapon and so forth. The traditional method of modeling and simulation of servo valve is based on block diagram or signal flow, which cannot describe the servo valve system from components level nor be used in modeling and simulation of overall servo systems. In the procedure of traditional method, computational causality must be involved in modeling of servo valve, which is inconvenient to execute modification on components or parameters. Modelica is an object-oriented modeling language which is suited for large, complex, heterogeneous and multi-domain systems. The key features of Modelica are multi-domain, object-oriented and non-causal, which are suitable for modeling of servo valve and make the model readable, reusable, and easy to modify. The simulation results show similar curves with traditional method. This new servo valve modeling and simulation method can provide the engineers a more efficient way to design and optimize a servo valve and an overall servo system.展开更多
Cold stripping is the most common process for crude oil sweetening in oilfields particularly at offshore installations because of its low price and relatively easy operating conditions in comparison with other sweeten...Cold stripping is the most common process for crude oil sweetening in oilfields particularly at offshore installations because of its low price and relatively easy operating conditions in comparison with other sweetening processes. In this paper the cold stripping process in tray column has been modeled mathematically in static and dynamic modes, and solved with the MATLAB software. This process has been used in the existing treatment facilities of an offshore oil production complex for verifying the model results. With the help of HYSYS software the effective parameters on the process have been discussed and the optimized conditions finalized after some plant modifications for improving the performance of stripper columns have been proposed.展开更多
Live bone inherently responds to applied mechanical stimulus by altering its internal tissue composition and ultimately biomechanical properties, structure and function. The final formation may structurally appear inf...Live bone inherently responds to applied mechanical stimulus by altering its internal tissue composition and ultimately biomechanical properties, structure and function. The final formation may structurally appear inferior by design but complete by function. To understand the loading response, this paper numerically investigated structural remodeling of mature sheep femur using evolutionary structural optimization method (ESO). Femur images from Computed Tomography scanner were used to determine the elastic modulus variation and subsequently construct finite element model of the femur with stiffest elasticity measured. Major muscle forces on dominant phases of healthy sheep gait were imposed on the femur under static mode. ESO was applied to progressively alter the remodeling of numerically simulated femur from its initial to final design by iteratively removing elements with low strain energy density (SED). The computations were repeated with two different mesh sizes to test the convergence. The elements within the medullary canal had low SEDs and therefore were removed during the optimization. The SEDs in the remaining elements varied with angle around the circumference of the shaft. Those elements with low SED were inefficient in supporting the load and thus fundamentally explained how bone remodels itself with less stiff inferior tissue to meet load demand. This was in line with the Wolff’s law of transformation of bone. Tissue growth and remodeling process was found to shape the sheep femur to a mechanically optimized structure and this was initiated by SED in macro-scale according to traditional principle of Wolff’s law.展开更多
This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transf...This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.展开更多
Public sector decision-making typically involves complex problems that are riddled with competing performance objecttives and possess design requirements which are difficult to capture at the time that supporting deci...Public sector decision-making typically involves complex problems that are riddled with competing performance objecttives and possess design requirements which are difficult to capture at the time that supporting decision models are constructed. Environmental policy formulation can prove additionally complicated because the various system components often contain considerable stochastic uncertainty and frequently numerous stakeholders exist that hold completely incompatible perspectives. Consequently, there are invariably unmodelled performance design issues, not apparent at the time of the problem formulation, which can greatly impact the acceptability of any proposed solutions. While a mathematically optimal solution might provide the best solution to a modelled problem, normally this will not be the best solution to the underlying real problem. Therefore, in public environmental policy formulation, it is generally preferable to be able to create several quantifiably good alternatives that provide very different approaches and perspectives to the problem. This study shows how a computationally efficient simulation-driven optimization approach that com- bines evolutionary optimization with simulation can be used to generate multiple policy alternatives that satisfy required system criteria and are maximally different in decision space. The efficacy of this modelling-to-generate-alternatives method is specifically demonstrated on a municipal solid waste management facility expansion case.展开更多
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ...Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.展开更多
This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. Th...This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. The complexity of this system is also analyzed. Moreover, the optimal harvesting policy are given for the inshore subpopulation, which includes the maximum sustainable yield and the corresponding harvesting effort.展开更多
On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability...On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas ...To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas liquid separation model, simplified CO2 removal model and tail gas cycle model was developed. An effective iteration algorithm was proposed to solve this process model, and the model was validated by industrial demonstration experiments data (SBCR with 5.8 m diameter and 30 m height), with a maximum relative error 〈 10% for predicting the SBCR performances. Subsequently, the proposed model was adopted to optimize the industrial SBCR performances simultaneously considering process and reactor parameters variations. The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6, but it doesn't increase obviously when the catalyst loading exceeds 45 ton (about 15 wt% concentration). Higher catalyst loading will result in higher difficulty for wax/catalyst separation and higher catalyst cost. There- fore, the catalyst loading (45 ton) is recommended for the industrial demonstration SBCR operation at syngas H2/ CO = 1.3, and the C5 + yield is about 402 ton" per day, which has an about 16% increase than the industrial dem- onstration run result.展开更多
Based on real time price counting of electric power, an optimization model of time sharing power for electrolytic zinc process(EZP) was established by means of an incremental fuzzy neural network(FNN), which is adopte...Based on real time price counting of electric power, an optimization model of time sharing power for electrolytic zinc process(EZP) was established by means of an incremental fuzzy neural network(FNN), which is adopted to approximate the relationship of current efficiency, current density and acidity. Penalty function introduced and optimal objective function reconstructed, a single loop simulated annealing algorithm(SAA) by using mutation and extending searching spaces was used to obtain optimal time sharing power scheme. Industrial practical results show that the whole system can greatly decrease the power consumption of EZP and increase the time sharing profits.展开更多
Land use and cover change(LUCC) is one of the important causes of the Earth’s carbon cycle imbalances resulting from failure in optimizing land use. The solution to this problem has been the hotspot of research in la...Land use and cover change(LUCC) is one of the important causes of the Earth’s carbon cycle imbalances resulting from failure in optimizing land use. The solution to this problem has been the hotspot of research in land and environmental science. We took 'low carbon', 'energy saving' and 'high-efficiency' as the goals of land use optimization,and integrated Markov-CA(Cellular Automaton),the Grid-Fractal model and GIS,in order to study carbon emission objective function,to establish a simulation method for land use spatial allocation optimization,to evaluate the effect of the method on carbon emissions. Regulation policy on three types of land use spatial allocation was proposed,including 'low-carbon type', 'low-carbon-economic type' and 'economic type'. We applied the method to analyze the land use spatial allocation in Taixing City of the 'Yangtze River Delta' regions in China,and obtained the following results:(i) The three optimization types would improve carbon emissions by 3. 21%,1. 80% and 0. 36% respectively in 2020,compared with 2010;(ii) The actual planning for 2020 was close to the 'low-carbon-economic type';(iii) The optimization method and regulation policy,combining local optimization and global control,could meet the sustainable multi-objective requirements for low-carbon constraints of land use spatial allocation. The result of this research could also serve as a reference for exploration into patterns of regional low-carbon land use and measures for energy saving and emission reduction.展开更多
The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land i...The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.展开更多
Cambodia is one of the Southeast Asia. With the agricultural market integration, Cambodia rural household is adjusting livestock structure naturally. In order to provide suitable support for agriculture policy, the au...Cambodia is one of the Southeast Asia. With the agricultural market integration, Cambodia rural household is adjusting livestock structure naturally. In order to provide suitable support for agriculture policy, the authors conducted a survey on 204 rural household in Cambodia. This article uses the optimization model, considering rural labor, cattle size, and animal disease risk, to analyze and get optimum result range. The result shows that the more off-farm job opportunity, suitable cattle feed structure, and investment on public health for cattle, the household income in rural Cambodia will increase.展开更多
Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our wo...Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our work focuses on this type of CIGS-based solar cells where CdS is replaced by a ZnS buffer layer. In this contribution, AFORS-HET software is used to simulate n-ZnO: Al/i-ZnO/n-ZnS/p-CIGS/Mo polycrystalline thin-film solar cell where the key parts are p-CIGS absorber layer and n-ZnS buffer layer. The characteristics of these key parts: thickness and Ga-content of the absorber layer, thickness of the buffer layer and doping concentrations of absorber and buffer layers have been investigated to optimize the conversion efficiency. We find a maximum conversion efficiency of 26% with a short-circuit current of 36.9 mA/cm2, an open circuit voltage of 824 mV, and a fill factor of 85.5%.展开更多
文摘The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.
基金Supported by the National Natural Science Foundation of China (70133011)~~
文摘[Objective] This study aimed to examine the simulated effect of Computable General Equilibrium (CGE)-based agricultural policy simulation system. [Method] The policy simulation platform based on CGE model was constructed by integrating policy simulation, CGE model and Decision Supporting System (DSS). The scenario analysis method was used to analyze the agricultural subsides policy simulation through empirical analysis. [Result] Farmers were the main beneficiaries of increasing agricultural production subsidies, which increased farmers' income and improved the export of agriculture products. The prototype system could solve the problems in actual policy simulation. [Conclusion] The results lay the foundation for the quantitative study on agricultural subsidy policy in China.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
基金Shanghai Municipal Science & Technology Projects, China (No. 09DZ1203300, No. 10JC1415200)
文摘The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided.
基金supported by the National High Technology Research and Development Foundation of China(2009AA044501)the National Basic Research Program of China (2011CB706502)
文摘Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as construction machinery, heavy equipment, weapon and so forth. The traditional method of modeling and simulation of servo valve is based on block diagram or signal flow, which cannot describe the servo valve system from components level nor be used in modeling and simulation of overall servo systems. In the procedure of traditional method, computational causality must be involved in modeling of servo valve, which is inconvenient to execute modification on components or parameters. Modelica is an object-oriented modeling language which is suited for large, complex, heterogeneous and multi-domain systems. The key features of Modelica are multi-domain, object-oriented and non-causal, which are suitable for modeling of servo valve and make the model readable, reusable, and easy to modify. The simulation results show similar curves with traditional method. This new servo valve modeling and simulation method can provide the engineers a more efficient way to design and optimize a servo valve and an overall servo system.
文摘Cold stripping is the most common process for crude oil sweetening in oilfields particularly at offshore installations because of its low price and relatively easy operating conditions in comparison with other sweetening processes. In this paper the cold stripping process in tray column has been modeled mathematically in static and dynamic modes, and solved with the MATLAB software. This process has been used in the existing treatment facilities of an offshore oil production complex for verifying the model results. With the help of HYSYS software the effective parameters on the process have been discussed and the optimized conditions finalized after some plant modifications for improving the performance of stripper columns have been proposed.
文摘Live bone inherently responds to applied mechanical stimulus by altering its internal tissue composition and ultimately biomechanical properties, structure and function. The final formation may structurally appear inferior by design but complete by function. To understand the loading response, this paper numerically investigated structural remodeling of mature sheep femur using evolutionary structural optimization method (ESO). Femur images from Computed Tomography scanner were used to determine the elastic modulus variation and subsequently construct finite element model of the femur with stiffest elasticity measured. Major muscle forces on dominant phases of healthy sheep gait were imposed on the femur under static mode. ESO was applied to progressively alter the remodeling of numerically simulated femur from its initial to final design by iteratively removing elements with low strain energy density (SED). The computations were repeated with two different mesh sizes to test the convergence. The elements within the medullary canal had low SEDs and therefore were removed during the optimization. The SEDs in the remaining elements varied with angle around the circumference of the shaft. Those elements with low SED were inefficient in supporting the load and thus fundamentally explained how bone remodels itself with less stiff inferior tissue to meet load demand. This was in line with the Wolff’s law of transformation of bone. Tissue growth and remodeling process was found to shape the sheep femur to a mechanically optimized structure and this was initiated by SED in macro-scale according to traditional principle of Wolff’s law.
基金supported by the National Natural Science Foundation of China(Grants No.51339004 and 71171151)
文摘This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.
文摘Public sector decision-making typically involves complex problems that are riddled with competing performance objecttives and possess design requirements which are difficult to capture at the time that supporting decision models are constructed. Environmental policy formulation can prove additionally complicated because the various system components often contain considerable stochastic uncertainty and frequently numerous stakeholders exist that hold completely incompatible perspectives. Consequently, there are invariably unmodelled performance design issues, not apparent at the time of the problem formulation, which can greatly impact the acceptability of any proposed solutions. While a mathematically optimal solution might provide the best solution to a modelled problem, normally this will not be the best solution to the underlying real problem. Therefore, in public environmental policy formulation, it is generally preferable to be able to create several quantifiably good alternatives that provide very different approaches and perspectives to the problem. This study shows how a computationally efficient simulation-driven optimization approach that com- bines evolutionary optimization with simulation can be used to generate multiple policy alternatives that satisfy required system criteria and are maximally different in decision space. The efficacy of this modelling-to-generate-alternatives method is specifically demonstrated on a municipal solid waste management facility expansion case.
基金The Key Project of the National Ninth-Five-Year Plan No. 96-004-02-09The 48Project of Ministry of Water Resources No. 985106The Project of Chinese Academy of Sciences
文摘Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
文摘This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. The complexity of this system is also analyzed. Moreover, the optimal harvesting policy are given for the inshore subpopulation, which includes the maximum sustainable yield and the corresponding harvesting effort.
基金Project supported by the National High Tech Research and Development Program of China (Grant No 511-0910-1031)the National "10th Five-year" Science and Technique Important Program of China (Grant No 2002BA404A07)
文摘On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
基金Supported by the National Key R&D Program of China(2017YFB0602500)
文摘To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas liquid separation model, simplified CO2 removal model and tail gas cycle model was developed. An effective iteration algorithm was proposed to solve this process model, and the model was validated by industrial demonstration experiments data (SBCR with 5.8 m diameter and 30 m height), with a maximum relative error 〈 10% for predicting the SBCR performances. Subsequently, the proposed model was adopted to optimize the industrial SBCR performances simultaneously considering process and reactor parameters variations. The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6, but it doesn't increase obviously when the catalyst loading exceeds 45 ton (about 15 wt% concentration). Higher catalyst loading will result in higher difficulty for wax/catalyst separation and higher catalyst cost. There- fore, the catalyst loading (45 ton) is recommended for the industrial demonstration SBCR operation at syngas H2/ CO = 1.3, and the C5 + yield is about 402 ton" per day, which has an about 16% increase than the industrial dem- onstration run result.
文摘Based on real time price counting of electric power, an optimization model of time sharing power for electrolytic zinc process(EZP) was established by means of an incremental fuzzy neural network(FNN), which is adopted to approximate the relationship of current efficiency, current density and acidity. Penalty function introduced and optimal objective function reconstructed, a single loop simulated annealing algorithm(SAA) by using mutation and extending searching spaces was used to obtain optimal time sharing power scheme. Industrial practical results show that the whole system can greatly decrease the power consumption of EZP and increase the time sharing profits.
基金Supported by National Natural Science Foundation of China(71233004)Nonprofit Industry Financial Program of Ministry of Land and Resources of China(201111011)+1 种基金Project of Jiangsu Province Science and Technology(BE2016302)Humanities and Social Sciences Project of Nanjing Agricultural University(SKZK2015008)
文摘Land use and cover change(LUCC) is one of the important causes of the Earth’s carbon cycle imbalances resulting from failure in optimizing land use. The solution to this problem has been the hotspot of research in land and environmental science. We took 'low carbon', 'energy saving' and 'high-efficiency' as the goals of land use optimization,and integrated Markov-CA(Cellular Automaton),the Grid-Fractal model and GIS,in order to study carbon emission objective function,to establish a simulation method for land use spatial allocation optimization,to evaluate the effect of the method on carbon emissions. Regulation policy on three types of land use spatial allocation was proposed,including 'low-carbon type', 'low-carbon-economic type' and 'economic type'. We applied the method to analyze the land use spatial allocation in Taixing City of the 'Yangtze River Delta' regions in China,and obtained the following results:(i) The three optimization types would improve carbon emissions by 3. 21%,1. 80% and 0. 36% respectively in 2020,compared with 2010;(ii) The actual planning for 2020 was close to the 'low-carbon-economic type';(iii) The optimization method and regulation policy,combining local optimization and global control,could meet the sustainable multi-objective requirements for low-carbon constraints of land use spatial allocation. The result of this research could also serve as a reference for exploration into patterns of regional low-carbon land use and measures for energy saving and emission reduction.
基金Natural Science Foundation of Hubei Province(No.2021CFB402)Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources(No.2020NGCMZD03)。
文摘The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.
文摘Cambodia is one of the Southeast Asia. With the agricultural market integration, Cambodia rural household is adjusting livestock structure naturally. In order to provide suitable support for agriculture policy, the authors conducted a survey on 204 rural household in Cambodia. This article uses the optimization model, considering rural labor, cattle size, and animal disease risk, to analyze and get optimum result range. The result shows that the more off-farm job opportunity, suitable cattle feed structure, and investment on public health for cattle, the household income in rural Cambodia will increase.
文摘Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our work focuses on this type of CIGS-based solar cells where CdS is replaced by a ZnS buffer layer. In this contribution, AFORS-HET software is used to simulate n-ZnO: Al/i-ZnO/n-ZnS/p-CIGS/Mo polycrystalline thin-film solar cell where the key parts are p-CIGS absorber layer and n-ZnS buffer layer. The characteristics of these key parts: thickness and Ga-content of the absorber layer, thickness of the buffer layer and doping concentrations of absorber and buffer layers have been investigated to optimize the conversion efficiency. We find a maximum conversion efficiency of 26% with a short-circuit current of 36.9 mA/cm2, an open circuit voltage of 824 mV, and a fill factor of 85.5%.