An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber rein...An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.展开更多
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet...The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.展开更多
The influence of dihedral layout on lateral–directional dynamic stability of the tailless flying wing aircraft is discussed in this paper. A tailless flying wing aircraft with a large aspect ratio is selected as the ...The influence of dihedral layout on lateral–directional dynamic stability of the tailless flying wing aircraft is discussed in this paper. A tailless flying wing aircraft with a large aspect ratio is selected as the object of study, and the dihedral angle along the spanwise sections is divided into three segments. The influence of dihedral layouts is studied. Based on the stability derivatives calculated by the vortex lattice method code, the linearized small-disturbance equations of the lateral modes are used to determine the mode dynamic characteristics. By comparing 7056 configurations with different dihedral angle layouts, two groups of stability optimized dihedral layout concepts are created. Flight quality close to Level 2 requirements is achieved in these optimized concepts without any electric stability augmentation system.展开更多
This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design id...This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.展开更多
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human beings.The widespread deployment of wireless micro sensors will make it possible to conduct accurate environme...The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human beings.The widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental monitoring for a use in both civil and military environments.They make use of these data to monitor and keep track of the physical data of the surrounding environment in order to ensure the sustainability of the area.The data have to be picked up by the sensor,and then sent to the sink node where they may be processed.The nodes of the WSNs are powered by batteries,therefore they eventually run out of power.This energy restriction has an effect on the network life span and environmental sustainability.The objective of this study is to further improve the Engroove Leach(EL)protocol’s energy efficiency so that the network can operate for a very long time while consuming the least amount of energy.The lifespan of WSNs is being extended often using clustering and routing strategies.The Meta Inspired Hawks Fragment Optimization(MIHFO)system,which is based on passive clustering,is used in this study to do clustering.The cluster head is chosen based on the nodes’residual energy,distance to neighbors,distance to base station,node degree,and node centrality.Based on distance,residual energy,and node degree,an algorithm known as Heuristic Wing Antfly Optimization(HWAFO)selects the optimum path between the cluster head and Base Station(BS).They examine the number of nodes that are active,their energy consumption,and the number of data packets that the BS receives.The overall experimentation is carried out under the MATLAB environment.From the analysis,it has been discovered that the suggested approach yields noticeably superior outcomes in terms of throughput,packet delivery and drop ratio,and average energy consumption.展开更多
基金co-supported by the National Natural Science Foundation of China (No. 51375383)Graduate Starting Seed Fund of Northwestern Polytechnical University of China (No. Z2014110)
文摘An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.
文摘The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.
文摘The influence of dihedral layout on lateral–directional dynamic stability of the tailless flying wing aircraft is discussed in this paper. A tailless flying wing aircraft with a large aspect ratio is selected as the object of study, and the dihedral angle along the spanwise sections is divided into three segments. The influence of dihedral layouts is studied. Based on the stability derivatives calculated by the vortex lattice method code, the linearized small-disturbance equations of the lateral modes are used to determine the mode dynamic characteristics. By comparing 7056 configurations with different dihedral angle layouts, two groups of stability optimized dihedral layout concepts are created. Flight quality close to Level 2 requirements is achieved in these optimized concepts without any electric stability augmentation system.
文摘This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.
基金supported via funding from Prince Sattam Bin Abdulaziz University(No.PSAU/2023/R/1444).
文摘The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human beings.The widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental monitoring for a use in both civil and military environments.They make use of these data to monitor and keep track of the physical data of the surrounding environment in order to ensure the sustainability of the area.The data have to be picked up by the sensor,and then sent to the sink node where they may be processed.The nodes of the WSNs are powered by batteries,therefore they eventually run out of power.This energy restriction has an effect on the network life span and environmental sustainability.The objective of this study is to further improve the Engroove Leach(EL)protocol’s energy efficiency so that the network can operate for a very long time while consuming the least amount of energy.The lifespan of WSNs is being extended often using clustering and routing strategies.The Meta Inspired Hawks Fragment Optimization(MIHFO)system,which is based on passive clustering,is used in this study to do clustering.The cluster head is chosen based on the nodes’residual energy,distance to neighbors,distance to base station,node degree,and node centrality.Based on distance,residual energy,and node degree,an algorithm known as Heuristic Wing Antfly Optimization(HWAFO)selects the optimum path between the cluster head and Base Station(BS).They examine the number of nodes that are active,their energy consumption,and the number of data packets that the BS receives.The overall experimentation is carried out under the MATLAB environment.From the analysis,it has been discovered that the suggested approach yields noticeably superior outcomes in terms of throughput,packet delivery and drop ratio,and average energy consumption.