期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
1
作者 刘华清 姜锐 +1 位作者 田钧方 朱凯旋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期380-391,共12页
This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic r... This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm. 展开更多
关键词 traffic flow connected and automated vehicles(CAVs) lane drop optimization-based control algorithm Heuristic rules-based algorithm
下载PDF
An Enhanced Steepest Descent Method for Global Optimization-Based Mesh Smoothing 被引量:1
2
作者 Kang Zhao Yabang Ma +2 位作者 You Wang Xin Yin Yufei Guo 《Journal of Applied Mathematics and Physics》 2020年第11期2509-2518,共10页
<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show tha... <div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show that the method performs better than the steepest descent method in the global smoothing. We also presented a physically-based interpretation to explain why the method works better than the steepest descent method. </div> 展开更多
关键词 MESH Mesh Smoothing Global Mesh Smoothing optimization-based Steepest Descent Method
下载PDF
A new collision avoidance model for pedestrian dynamics 被引量:3
3
作者 王千龄 陈姚 +2 位作者 董海荣 周敏 宁滨 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期453-462,共10页
The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model fo... The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model for the avoidance of collisions, where the social repulsive force is removed in favor of a search for the quickest path to destination in the pedestrian's vision field. In this way, the behaviors of pedestrians are governed by changing their desired walking direction and desired speed. By combining the critical factors of pedestrian movement, such as positions of the exit and obstacles and velocities of the neighbors, the choice of desired velocity has been rendered to a discrete optimization problem. Therefore,it is the self-driven force that leads pedestrians to a free path rather than the repulsive force, which means the pedestrians can actively avoid collisions. The new model is verified by comparing with the fundamental diagram and actual data. The simulation results of individual avoidance trajectories and crowd avoidance behaviors demonstrate the reasonability of the proposed model. 展开更多
关键词 pedestrian dynamics social force model collision avoidance optimization-based method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部