Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Con...Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application.展开更多
深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved dee...深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。展开更多
目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类...目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类,为大流计算所有源至目的主机可达路径的最短跳数路径集;然后,根据LLDP和ECHO测量链路时延以求得时延最优路径集;最后,采用概率拟合算法分配路径,实现数据中心网络流量负载均衡.在相同场景下的实验结果表明,与ECMP、Hedera和DIFF算法相比,DSA-D算法具有更好的吞吐量、链路带宽利用率和平均往返时延.展开更多
基金financially supported by the National Natural Science Foundation of China(22278380,22108259)China Postdoctoral Science Foundation(2021M692911,2022T150589)
文摘Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application.
文摘深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。
文摘目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类,为大流计算所有源至目的主机可达路径的最短跳数路径集;然后,根据LLDP和ECHO测量链路时延以求得时延最优路径集;最后,采用概率拟合算法分配路径,实现数据中心网络流量负载均衡.在相同场景下的实验结果表明,与ECMP、Hedera和DIFF算法相比,DSA-D算法具有更好的吞吐量、链路带宽利用率和平均往返时延.